Глубинные насосы

СОДЕРЖАНИЕ

ОБЩИЕ ДАННЫЕ

Качаемое рабочее телю, Рабочие данные. Двигатели применяемые в глубинных претатах. ———————————————————————————————————	Kauaawaa nafau	постоло Рабонио паннию Пригатови примондом на в свибинии у агрогатах	
Конструкция пасосов Св.2, GB.2, GB.2, GC.3, GC.3, GC.3, GC.4, GG.2, GC.4, GG.2, GG.3, GG.3, GG.4, GG.2, GG.3, GG.			
Конструкционное исполнения. 19			
Укомплектованность поставок. 5 Предокраняющий слюй. Структура обозначения выбора 6 Полбор с набкающего кабеля. 6 Охлаждение двигателя. Предокранение двигателя. 10 Потери дваления 11 Примеры установок 12 Альтернативные способы застройки глубинных агрегатов 15 РИСУНКИ-СЕЧЕНИЯ НАСОСОВ Конструкция насосов GAB.2, GAB.4, GAB.5 16 Конструкция насосов GB.0, GBA.1, GBA.2, GBC.0, GBC.1, GBC.2 17 Конструкция насосов GB.0, GBA.1, GBA.2, GC.5, GCA.5, GCA.5, GCA.7, GCA.8 15 Конструкция насосов GDB.2, GDB.4, GFB.1 26 ХАРАКТЕРИСТИКИ і ТЕХНИЧЕСКИЕ ДАННЫЕ НАСОСОВ ЗАРАКТЕРИСТИКИ І ТЕХНИЧЕСКИЕ ДАННЫЕ НАСОСОВ СВВ.2 22.22 GAB.2 22.23 GAB.2 22.23 GAB.3 26.23 GBA.2 GBC.2 36-33 GBB.3 GBC.0 38-33 GBC.3 40-4 GBC.5 46-4 GC.0 48-5 GC.2 52-5 GC.3 56-5			
Предохраняющий слой. Структура обозначения выбора Подбор снабжающего кабеля. (потери давления Примеры установок Аліктернативные способы застройки глубинных агрегатов (потери давления Примеры установок Аліктернативные способы застройки глубинных агрегатов (потери давления Примеры установок Аліктернативные способы застройки глубинных агрегатов (потерукция насосов GAB.2, GAB.4, GAB.5 Конструкция насосов GB.0, GBA.1, GBA.2, GBC.0, GBC.1, GBC.2 (потерукция насосов GB.0, GBA.1, GBA.2, GBC.0, GBC.1, GBC.2 (потерукция насосов GB.0, GC.3, GC.5, GCA.5, GCA.6, GCA.7, GCA.8 (потерукция насосов GB.0, GB.2, GBB.4, GFB.1) (потерукция насосов GB.2, GDB.4, GFB.1) (потерукция насосов GB.2, GBC.4, GBC.2, GC.4, G			
Подбор снабжающего кабеля. (с. 6. Охлаждение двигателя. Предохранение двигателя. Потери дваления. (тотери дваления. (тотерукция насосов GAB.2, GAB.4, GAB.5. (тотерукция насосов GBC.3, GBC.4, GBC.5. (тотерукция насосов GBC.3, GBC.4, GBC.5. (тотерукция насосов GC.0, GC.2, GC.3, GC.5, GCA.5, GCA.6, GCA.7, GCA.8. (тотерукция насосов GC.0, GC.2, GC.3, GC.5, GCA.5, GCA.6, GCA.7, GCA.8. (тотерукция насосов GC.0, GC.2, GC.3, GC.5, GCA.5, GCA.6, GCA.7, GCA.8. (тотерукция насосов GC.0, GC.2, GC.3, GC.5, GCA.5, GCA.6, GCA.7, GCA.8. (тотерукция насосов GC.0, GC.2, GC.3, GC.5, GCA.6, GCA.7, GCA.8. (тотерукция насосов GC.0, GC.2, GC.3, GC.5, GCA.6, GCA.7, GCA.8. (тотерукция насосов GC.0, GC.2, GC.3, GC.5, GCA.6, GCA.7, GCA.8, GCA.5, GCA.6, GCA			
Охлаждение двигателя. Предохранение двигателя. Потери дваления Потери дваления Примеры установок Альтернативные способы застройки глубинных агрегатов. 11 РИСУНКИ-СЕЧЕНИЯ НАСОСОВ Конструкция насосов GAB.2, GAB.4, GAB.5. Конструкция насосов GBC.3, GBC.4, GBC.5, GCA.5, GCA.6, GCA.7, GCA.8. Конструкция насосов GBC.3, GBC.4, GBC.5. Конструкция насосов GDB.2, GDB.4, GFB.1. 20 ХАРАКТЕРИСТИКИ і ТЕХНИЧЕСКИЕ ДАННЫЕ НАСОСОВ Конструкция насосов GDB.2, GDB.4, GFB.1. 21 ХАРАКТЕРИСТИКИ І ТЕХНИЧЕСКИЕ ДАННЫЕ НАСОСОВ Конструкция насосов GDB.2, GDB.4, GFB.1. 22 ХАРАКТЕРИСТИКИ І ТЕХНИЧЕСКИЕ ДАННЫЕ НАСОСОВ Конструкция насосов GDB.2, GDB.4, GFB.1. 25 ХАРАКТЕРИСТИКИ І ТЕХНИЧЕСКИЕ ДАННЫЕ НАСОСОВ Конструкция насосов GDB.2, GDB.4, GFB.1. 26 ХАРАКТЕРИСТИКИ І ТЕХНИЧЕСКИЕ ДАННЫЕ НАСОСОВ Конструкция насосов GDB.2, GDB.4, GFB.1. 26 ХАРАКТЕРИСТИКИ І ТЕХНИЧЕСКИЕ ДАННЫЕ НАСОСОВ Конструкция насосов GDB.2, GDB.4, GFB.1. 26 ХАРАКТЕРИСТИКИ І ТЕХНИЧЕСКИЕ ДАННЫЕ НАСОСОВ Конструкция насосов GDB.2, GDB.4, GFB.1. 27 ХАРАКТЕРИСТИКИ І ТЕХНИЧЕСКИЕ ДАННЫЕ НАСОСОВ Конструкция насосов GDB.2, GBC.2, GC.3, GC.3, GC.3, GCA.5, GCA.6, GCA.7, GCA.8, GC.2,			
Примеры установок			
Альтернативные способы застройки глубинных агрегатов	Потери давлени	Я	13
РИСУНКИ-СЕЧЕНИЯ НАСОСОВ Конструкция насосов GB.2, GB8.4, GB8.5 16 Конструкция насосов GBC.3, GBC.4, GBC.5 18 Конструкция насосов GC.0, GC.2, GC.3, GC.5, GCA.5, GCA.6, GCA.7, GCA.8 15 Конструкция насосов GD8.2, GD8.4, GFB.1 20 ХАРАКТЕРИСТИКИ і ТЕХНИЧЕСКИЕ ДАННЫЕ НАСОСОВ ХАРАКТЕРИСТИКИ і ТЕХНИЧЕСКИЕ ДАННЫЕ НАСОСОВ ЖАРАКТЕРИСТИКИ І ТЕХНИЧЕНЬ І ТЕХНИЧЕНЬ І ТЕХНИ	Примеры устано	овок	14
Конструкция насосов GAB.2, GAB.4, GAB.5 Конструкция насосов GB.0, GBA.1, GBA.2, GBC.0, GBC.1, GBC.2 Конструкция насосов GC.3, GBC.4, GBC.5 Конструкция насосов GC.0, GC.2, GC.3, GC.5, GCA.5, GCA.6, GCA.7, GCA.8 XAPAKTEPUCTUKU i TEXHUYECKUE ДАННЫЕ НАСОСОВ	Альтернативные	е способы застройки глубинных агрегатов	15
Конструкция насосов GB.0, GBA.1, GBA.2, GBC.0, GBC.1, GBC.2	РИСУНКИ-СЕ	чения насосов	
Конструкция насосов GB.0, GBA.1, GBA.2, GBC.0, GBC.1, GBC.2			
Конструкция насосов GBC.3, GBC.4, GBC.5			
Конструкция насосов GC.0, GC.2, GC.3, GC.5, GCA.5, GCA.6, GCA.7, GCA.8			
Конструкция насосов GDB.2, GDB.4, GFB.1 20 XAPAKTEPИСТИКИ I TEXHUYECKUE ДАННЫЕ НАСОСОВ 22-23 GAB.2 22-25 GAB.4 24-25 GB.0 GBC.0 28-31 GBA.1 GBC.1 32-35 GBC.3 40-43 GBC.3 40-43 GBC.4 44-44 GBC.5 46-47 GC.0 48-51 GC.2 52-55 GC.3 56-55 GC.5 60-63 GCA.5 64-67 GCA.6 68-66 GCA.7 70-71 GCA.8 72-73 GDB.2 74-77 GDB.4 78-75 GFB.1 80-81			
GAB.2 22-25 GAB.4 24-25 GAB.5 26-27 GB.0 GBC.0 28-31 GBA.1 GBC.1 32-35 GBC.3 40-43 GBC.4 44-44 GBC.5 46-47 GC.0 48-51 GC.2 52-55 GC.3 56-59 GC.5 60-63 GCA.5 64-67 GCA.6 68-66 GCA.7 70-71 GCA.8 72-73 GDB.2 74-77 GDB.4 78-79 GFB.1 80-81			
GAB.2 22-23 GAB.4 24-25 GAB.5 26-27 GB.0 GBC.0 28-31 GBA.1 GBC.1 32-33 GBA.2 GBC.2 36-39 GBC.3 40-43 GBC.4 41-45 GBC.5 46-47 GC.0 48-51 GC.2 52-55 GC.3 56-55 GC.5 60-63 GCA.5 60-63 GCA.5 64-67 GCA.6 68-69 GCA.7 70-71 GCA.8 72-73 GDB.2 74-77 GDB.4 78-75 GFB.1 80-81	конструкция на	COCOB GDb.2, GDb.4, GFb.1	20
GAB.2 22-23 GAB.4 24-25 GAB.5 26-27 GB.0 GBC.0 28-31 GBA.1 GBC.1 32-33 GBA.2 GBC.2 36-39 GBC.3 40-43 GBC.4 41-45 GBC.5 46-47 GC.0 48-51 GC.2 52-55 GC.3 56-55 GC.5 60-63 GCA.5 60-63 GCA.5 64-67 GCA.6 68-69 GCA.7 70-71 GCA.8 72-73 GDB.2 74-77 GDB.4 78-75 GFB.1 80-81	ХАРАКТЕРИС	ТИКИ і ТЕХНИЧЕСКИЕ ДАННЫЕ НАСОСОВ	
GAB.4 24-25 GAB.5 26-27 GB.0 GBC.0 28-31 GBA.1 GBC.1 32-35 GBA.2 GBC.2 36-39 GBC.3 40-43 GBC.4 44-45 GC.0 48-51 GC.2 52-55 GC.3 56-59 GC.5 60-63 GCA.5 64-67 GCA.6 68-69 GCA.7 70-71 GCA.8 72-73 GDB.2 74-77 GFB.1 80-81			
GAB.5 26-27 GB.0 GBC.0 28-31 GBA.1 GBC.1 32-35 GBA.2 GBC.2 36-33 GBC.3 40-43 GBC.4 44-44 GBC.5 46-47 GC.0 48-51 GC.2 52-55 GC.3 56-59 GC.5 60-63 GCA.5 64-67 GCA.6 68-69 GCA.7 70-71 GCA.8 72-73 GDB.2 74-77 GDB.4 78-79 GFB.1 80-81	GAB.2		22-23
GB.0 GBC.0 28-31 GBA.1 GBC.1 32-35 GBA.2 GBC.2 36-39 GBC.3 40-43 GBC.4 44-45 GBC.5 46-47 GC.0 48-51 GC.2 52-55 GC.3 56-59 GC.5 60-63 GCA.5 64-67 GCA.6 68-69 GCA.7 70-71 GCA.8 72-73 GDB.2 74-77 GPB.4 78-79 GFB.1 80-81	GAB.4		24-25
GBA.1 GBC.1 32-35 GBA.2 GBC.2 36-39 GBC.3 40-43 GBC.4 44-45 GBC.5 46-47 GC.0 48-51 GC.2 52-55 GC.3 56-59 GC.5 60-63 GCA.5 64-67 GCA.6 68-69 GCA.7 70-71 GCA.8 72-73 GDB.2 74-77 GPB.1 80-81	GAB.5		26-27
GBA.2 GBC.2 36-39 GBC.3 40-43 GBC.4 44-45 GBC.5 46-47 GC.0 48-51 GC.2 52-55 GC.3 56-59 GCA.5 60-63 GCA.6 68-69 GCA.7 70-71 GCA.8 72-73 GDB.2 74-77 GDB.4 78-79 GFB.1 80-81	GB.0 GBC.0		
GBC.3 GBC.4 GBC.5 GC.0 GC.2 GC.3 GC.5 GC.5 GC.5 GCA.5 GCA.7 GCA.8 GCA.7 GCA.8 GDB.2 GDB.4 GFB.1 GREC5 GBC.4 44-45 44-45 44-45 46-47			
GBC.4 GBC.5 GC.0 GC.2 GC.3 GC.5 GC.5 GC.5 GCA.6 GCA.7 GCA.8 GDB.2 GDB.4 GFB.1 44-45 46-47 46-47 46-47 48-51 66-63 68-63 67-75			
GBC.5 GC.0 GC.2 GC.3 GC.5 GC.5 GC.5 GCA.5 GCA.6 GCA.7 GCA.8 GCA.8 GDB.2 GDB.4 GFB.1 48-51 GC-5 GC.9 GC.9 GC.9 GC.9 GC.9 GC.9 GC.9 GC.9			
GC.0 GC.2 GC.3 GC.5 GC.5 GCA.5 GCA.6 GCA.7 GCA.8 GDB.2 GDB.4 GFB.1 48-51 GC.9 52-55 GC.3 GC.6 GCA.6 GCA.7 GCA.8 GCA.7 GCA.8 GCA.8 GCA.7 G			
GC.2 52-55 GC.3 56-59 GC.5 60-63 GCA.5 64-67 GCA.6 68-69 GCA.7 70-71 GCA.8 72-73 GDB.2 74-77 GDB.4 78-79 GFB.1 80-81			
GC.3 56-59 GC.5 60-63 GCA.5 64-67 GCA.6 68-69 GCA.7 70-71 GCA.8 72-73 GDB.2 74-77 GDB.4 78-79 GFB.1 80-81			
GC.5 GCA.5 GCA.6 GCA.7 GCA.8 GDB.2 GDB.4 GFB.1 GC.5 GCA.6 GCA.7 GFB.1			
GCA.5 GCA.6 GCA.7 GCA.8 GDB.2 GDB.4 GFB.1 GCA.8 GFB.1 GCA.8 GCA.7 GCA.8			
GCA.6 GCA.7 GCA.8 GDB.2 GDB.4 GFB.1 GFB.1 GRAF GRAF GRAF GRAF GRAF GRAF GRAF GRAF			
GCA.7 GCA.8 GDB.2 GDB.4 GFB.1 GFB.1 70-71			
GCA.8			
GDB.2			
GDB.4			
GFB.1 80-81			78-79
ТЕХНИЧЕСКИЕ ДАННЫЕ ДВИГАТЕПЕЙ	GFB.1		
ТЕХНИЧЕСКИЕ ДАННЫЕ ДВИГАТЕПЕЙ			
	ТЕХНИЧЕСКИ	ІЕ ДАННЫЕ ДВИГАТЕПЕЙ	

Глубинные двигатели

Применение

Глубинные составы предназначены для: работы в водо-снабжающих системах, нагнетания и увеличения давления жидкостей в технологических процессах, понижения уровня грунтовых вод, оросительных системах и других промышленных и бытовых применениях.

Основные черты глубинных насосов типа G

- возможность застройки качающего состава, в позиции висящей, стоящей и лежащей без необходимости приготовления фундаментов
- возможность встраивания в просверленных отверстиях колодцев с малыми и средними диаметрами без плащей направляюще засасывающих
- возможность встраивания в просверленных отверстиях колодцев большого диаметра и резервуарах с большими габаритами с применением плащей направляюще засасывающих
- возможность непосредственного встраивания в линию трубопровода качающего насоса в герметичном плаще в вертикальной или горизонтальной ориентировке.
- возможность построения качающего состава с обходом параллельно линии трубопровода в герметичном плаще в вертикальной или горизонтальной ориентировке.
- линейное размещение штекеров в герметическом плаще упрощает построение качающего состава
- сомкнутая конструкция требует минимума пространства
- насосы и двигатели имеют стандартную конструкцию соединений и муфт по NEMA (стандард США), одобренную и используемую всеми производителями глубинных насосов в мире
- шлицевое соединение муфты обеспечивает надёжное перенесение крутящего момента без нужды консервации, простой монтаж и демонтаж или замену, что упрощает сервисное обслуживание
- подшипниковый узел насоса и двигателя не требует обслуживания, смазывается качаемой жидкостью в насосе и жидкостью, заполняющей двигатель в двигателе, вытягивая из него тепло энергетических потерь.
- затопленный качающий состав в герметичном плаще или сосуде не шумит

Качаемые жидкости

Глубинные насосы, предназначенные для качания питьевой воды очищенной, сырой воды, морской, а также минеральной или термальной воды, не содержащих примесей стирающих и длинноволокнистых.

Механические загрязнения качаемой воды не могут превышать 100 мг/литр воды, для насосных составов, в которых роторы и направители выполнены из пластмасс до 50 мг/литр воды.

Не допускаются загрязнения, которые могут способствовать появлению осадков в насосе и на поверхности двигателя. Если это неизбежно, пользователь насоса обязан время от времени удалять осадки, когда их слой достигает толщину до 0,5 мм.

Недопустимым является качание жидкостей способствующих ускоренному коррозионному и эрозионному износу материалов использованных в насосе.

Является возможным качание других жидкостей, чем вода после договора с производителем.

Сокращенные данные

производительность Q: 0,9:420 м³/ч

высота подъема Н: до 642 м

Температура качаемой жидкости t: до 25°С*

* в случае появления высших температур, необходимо каждый раз проконсультироваться с производителем.

Двигатели, используемые в глубииных насосах

Глубинные насосы приводятся в действие электродвигателями погружаемыми мокрыми типа **SMV**.

Возможен подбор, по желанию клиента двигателей типа: **SMH, FRANKLIN Electric GmbH** и других с фланцевым соединением с размерами по стандарту **NEMA**.

В следующей части каталога представлено характерные параметры выше приведенных двигателей.

Редие-Воижек предведением

Использование умформера частоты.

Все качающие глубинные составы производства Hydro-Vacuum S.A. приводящиеся электрическими трёхфазными двигателями могут питаться с помощью умформера частоты.

- не превышать номинальной частоты питания глубинного двигателя 50 или 60 Гц.
- подбирать глубинный двигатель на одну величину мощности выше той, которая получилась по стандартному подбору мощности двигателя для насоса из каталога.
- допустимая минимальная частота составляет 32 Гц, при условии сохранения минимальной скорости переплы ва 0,2 м/с на наружной поверхности двигателя. С этой целью рекомендуется инсталлировать всасывающий плащ.
- предохранять двигатель от вредных перенапряжений и помех, для этого надо применять фильтры RC и LC
- умформер подбирать по величине номинального тока двигателя.
- умформер должен иметь встроенные предохранения двигателя от:
 - токовой перегрузки,
 - падения питающего напряжения,
 - исчезновения фазы.
- питание умформера должно выполнять все требования производителя, особенно относи тельно требуемых сечений электрических проводов и не превышения допустимого расстояния умформера от двигателя.
- надо помнить, что при изменении частоты тока /вращательной скорости вала качающего состава/ действуют зависимости:

$$Q_x = Q_n \cdot f_x/f_n$$
; $H_x = H_n \cdot (f_x/f_n)^2$; $P_x = P_n \cdot (f_x/f_n)^3$

Подробности, касающиеся работы качающего состава с умформером частоты мы просим согласовывать с отделом *Технических Советчиков* нашего завода.

Общие сповия важности характе истии

На все характеристики насосов приведённых в каталоге распространяются общие условия:

- характеристики, приведенные в каталоге относятся с насосам, объединенным с двигателями питаемыми током с частотой в 50Гц с мощностью обеспечивающей полный диапазон каталоговой производительности насоса,
- толлераниии параметров работы насосов согласно PN-EN/50 9906 KI.2 Приложение A
- характеристики вакные для воды свободной от воздуха температурой в 200(и вязкостью **v = 1 мм21c**
- характеристики насосов $\mathbf{H} = \mathbf{f}(\mathbf{Q})$ учитывают гидравлические потери на входе в насос и на обратном клапане инсталлиро ванном в насосе
- характеристика мощности насоса P = f(Q) представляет среднее потребление мощности одной ступени насоса,
- характеристики коэффициента полезного действия (КПД) **η** = **f** (**Q**) относятся к одной гидравлической ступени насоса с ротором номинального диаметра, без потерь на доплыв к насосу и на обратном клапане, коэффициент полезного действия (КПД) для нескольких ступеней или с роторами уменьшенного диаметра меньше от представленной в каталоге, а характеристика **η** = **f** (**Q**) может быть поставлена производителем по желанию клиента,
- насос работает без кавитации, если соблюден требуемый антикавитаиионныи запас NP5H увеличенный на величину от 0,5 до 7 м столба жидкости,
- сцелью качки жидкостей инык чем вода просим по этому вопросу консультироваться с производителем; качание жидкостей с удельным весом и вязкостью выше чем для воды, повлечёт за собой увеличение потребления мощности на валу насоса, тогда стоит применить для при вода двигатель с соответственно выаией мощностью.

В определённой ситуации требуемой пункт работы может находиться между номинальными характеристиками очередных типоразмеров насосов. Сэтой целью в насосах типы: **GC,GD,GF** введено промежуточные характеристики, полученные путёмуменьшения диаметра номинальных роторов. В насосах типа **GC** и **GD** до 9-ти ступеней очередные уменьшения диаметров обозначено буквами: А, В, с,..., в насосе типа GF очередные уменьшения диаметра обозначено цифрами: с 1 до 5. Это разрешает на самый оптимальный подбор качающего состава для требований эксплуатационных параметров, уменьшает потребление мощности на валу насоса и даёт возможность подбора двигателя с меньшей знаменательной мощностью.

Если возник интерес к насосам с роторами диаметры, которых уменьшены более чем на 9 ступеней, просим непосредственно контактироваться с производителем с целью существенных дополнительных согласований.

Рекомендуется подбирать насос к работе в пределах его высокого кпд, что позволит на экономическую эксплуатацию и максимальную надёжность качающего состава.

Качающий состав не может работать при закрытом клапане на нагнетательной трубе, так как охлаждение двигателя качаемой жидкостью отсутствует. Рекомендуется, чтобы минимальная производительность насоса не была меньше, чем О,2.Q......

Конструкция глубинных насосов

Глубинные насосы являются многоступенчатыми насосами в последовательной постройке. Насос инсталлируется непосредственно на глубинном двигателе, оттуда и взялось определение качающий состав. Качающий состав монтируется в вертикальном положении. В нижней части находится глубинный (подводный) электрический двигатель, а в верхней глубинный центробежный насос. Непосредственно на двигателе монтируется всасывающий корпус, предохраняемый входной решеткой, далее очередные ступени насоса, состоящие из корпуса и посаженного на нём направителя, а также радиусного или диагонального ротора. Окончанием насоса является корпус возвратного клапана и заключительный корпус, который делает возможным присоединение состава к трубопроводу с помощью фланцевого или резьбового соединения. Вращающийся узел насоса соединен с валом двигателя с помощью муфты. Правильное размещение ротора в корпусе ступени и направителя осуществляется с помощью дистанционных втулок. Роторный узел вращается в стально-резиновых вкладышах.

Корпусы (ступени насоса) соединяются в зависимости от типоразмера насоса:

- стягивающими лентами (в насосах типа GAB; GB; GBC; GC и GCA),
- каждая из ступеней двухсторонними болтами (в насосах GDB и GFB).

Глубинные подводные составы зачисляются к насосам специального предназначения. Отличаются компактной конструкцией и высокой надёжностью. Проявляют они ниже перечисленные достоинства:

- низкие затраты устройства (очень маленький диаметр отверстия колодца, лишними являются наземные здания над колодцем),
- низкие эксплуатационные затраты
- простой надзор (нет смазочных точек),
- легкий и быстрый монтаж и демонтаж.

Предприятие производит насосы этого типа с 1938 года. Опыт и постоянная модернизация привела к конструкции типоразмера глубинных насосов, которых параметры и надёжность сравнивается с европейским уровнем. Используются везде в водоснабжении на территории всей страны в коммунальных службах больших городов, как в деревенских сетях водоснабжения, так и в индивидуальных водозаборах. Они получили самую позитивную оценку при тестировании в эксплуатации в шахтах бурого угля Бэлхатув и Конин. Они используются в других шахтах, а также в строительстве, где глубокие раскопки требуют удержания низкого уровня грунтовых вод.

Материалы, использованные в глубинных насосах

Насосы производятся в четырёх материальных исполнениях. Основные части насосов и использованные материалы приведено в таблице:

Тип		Кор	пуса		((пуса е часті	4)	H	аправ. механ		ie		Рот	оры		Вал и	муфтя	П	одши	пники
насоса	Мате	риально	е исполн	сполнение		Материальное исполнение		Мате	Материальное исполнение		Мате	Материальное испол		Материальное исполнени		ение	Матер. и	сполнение	Мат	ер. ист	олнение
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1 2	3 4	1	2	3 4
GAB.2	латунь	-	-	-	н. сталь	-	-	-	Лексан	-	-	-	Лексан	-	-	-	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GAB.4	латунь	-	-	-	н. сталь	-	-	-	Лексан	-	-	-	Лексан	-	-	-	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GAB.5	латунь	-	-	-	н. сталь	-	-	-	Лексан	-	-	-	Лексан	-	-	-	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GB.0	чугун	-	-	-	чугун	-	-	-	Лексан	-	-	-	Лексан	-	-	-	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GBC.0	латунь	-	-	-	н. сталь	-	-	-	Лексан	-	-	-	Лексан	-	-	-	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GBA.1	чугун	-	-	-	чугун	-	-	-	Лексан	-	-	-	Лексан	-	-	-	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GBC.1	латунь	-	-	-	н. сталь	-	-	-	Лексан	-	-	-	Лексан	-	-	-	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GBA.2	чугун	-	-	-	чугун	-	-	-	Лексан	-	-	-	Лексан	-	-	-	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GBC.2	латунь	-	-	-	н. сталь	-	-	-	Лексан	-	-	-	Лексан	Лексан	-	-	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GBC.3	латунь	чугун	-	-	н. сталь	чугун	-	-	Лексан	Лексан	-	-	Лексан	-	-	-	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GBC.4	чугун	-	-	-	чугун	-	-	-	-	-	-	-	латунь	-	-	-	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GBC.5	чугун	-	-	-	чугун	-	-	-	-	-	-	-	латунь	-	-	-	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GC.0	с. чугун	с. чугун	о. бронза	с. чугун	чугун	с. чугун	о. бронза	м.чугун	-	-	-	-	Норил ¹	латунь	о. бронза	латунь	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GC.2	с. чугун	с. чугун	о. бронза	с. чугун	чугун	с. чугун	о. бронза	м.чугун	-	-	-	-	Норил1	латунь	о. бронза	латунь	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GC.3	-	с. чугун	о. бронза	с. чугун	-	с. чугун	о. бронза	м.чугун	-	-	-	-	-	латунь	о. бронза	латунь	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GC.5	-	с. чугун	о. бронза	с. чугун	-	с. чугун	о. бронза	м.чугун	-	-	-	-	-	латунь	о. бронза	латунь	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GCA.5	-	с. чугун	о. бронза	с. чугун	-	с. чугун	о. бронза	м.чугун	-	-	-	-	-	латунь	о. бронза	латунь	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GCA.6	-	с. чугун	о. бронза	с. чугун	-	с. чугун	о. бронза	м.чугун	-	-	-	-	-	латунь	о. бронза	латунь	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GCA.7	-	с. чугун	о. бронза	с. чугун	-	с. чугун	о. бронза	м.чугун	-	-	-	-	-	латунь	о. бронза	латунь	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GCA.8	-	с. чугун	о. бронза	с. чугун	-	с. чугун	о. бронза	м.чугун	-	-	-	-	-	латунь	о. бронза	латунь	нержавен	ощая сталь	резин	а/нержаі	веющая сталь
GDB.2	с. чугун	чугун²	о. бронза	с. чугун	чугун	чугун²	о. бронза	м.чугун	-	-	-	-	латунь	латунь	о. бронза	латунь	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GDB.4	с. чугун	чугун²	о. бронза	с. чугун	чугун	чугун²	о. бронза	м.чугун	-	-	-	-	латунь	латунь	о. бронза	латунь	нержавен	ощая сталь	резин	а/нержа	веющая сталь
GFB.1	с. чугун	чугун²	о. бронза	с. чугун	чугун	чугун²	о. бронза	м.чугун	-	-	-	-	латунь	латунь	о. бронза	латунь	нержавен	ощая сталь	резин	а/нержа	веющая сталь

¹ касается насосов GC.0.01 ÷13 и GC.2.01 ÷ 13

н. сталь - нержавеющая сталь о. бронза - оловянная бронза м. чугун - медный чугун сфероидальный чугун - с. чугун

² внутренние поверхности эмалированные

Конструкционные исполнения

Конструкционные исполнения обозначаются кодом - $\mathbf{e_1}$ $\mathbf{e_2}$ $\mathbf{e_3}$ $\mathbf{e_4}$ - из чего

e₁ - определяет приспособление для присоединения двигателя

 $\mathbf{e}_{_{\! 2}}$ - определяет тип клапана или его отсутствие

е, - определяет тип выходного штекера

е₄ - резерв (обозначение 0)

Пояснение определения структуры обозначений:

Обозначение	e,										
конструкционного		Кон	Конструкционная разновидность								
исполнения	Название исполнения	GA	GB	GC	GD	GF					
	Насос для двигателя 4" с наконечником вала по NEMA	Х									
1	Насос для двигателя 6" с наконечником вала по NEMA		Х								
ı	Насос для двигателя 8" с наконечником вала по NEMA			Х							
	Насос для двигателя 10"				Х						
	Насос для двигателя 4" с наконечником вала по NEMA		Х								
2	Насос для двигателя 6" с наконечником вала по NEMA			Х							
2	Насос для двигателя 8"с наконечником вала по NEMA				Х	Х					
3*	Насос для двигателя 10"			Х							
3*											
4	Насос для двигателя 12"				Х	Х					
4											
-	Насос для двигателя 10"					Х					
5											

^{*} касается GCA.6, GCA.7, GCA.8

Обозначение	e _z									
конструкционного		Конструкционная разновидность								
исполнения	Название исполнения	GA	GB	GC	GD	GF				
1	Плотный клапан	Х	Х	Х	Х	Х				
2	Без клапана	Х	Х							
3	Неплотный клапан		Х	Х	Х	Х				
4	Открытый клапан			Х	Х					

Обозначение	e ₃									
конструкционного	U	Конструкционная разновидность								
исполнения	Название исполнения	GA	GB	GC	GD	GF				
1	Присоединительный штекер - фланец			Х	Х	Х				
2	Приёоединительный штекер - резьба	Χ	Х	Х						

Обозначение	$e_{_4}$										
конструкционного	NНазвание исполнения	Конструкционная разновидность									
исполнения	кпазвание исполнения	GA	GB	GC	GD	GF					
9	Для застройки и работы в водяных противопожарных инсталляциях струйных и оросительных	Х	Х	Х	Х	Х					

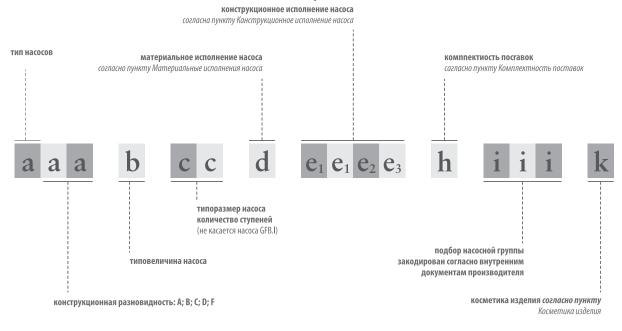
Пример обозначения конструкционного исполнения

Обозначения - $\mathbf{e}_1 \, \mathbf{e}_2 \, \mathbf{e}_3 \, \mathbf{e}_4 = 1329$

Насос GC для двигателя $\mathbf{e}_1 = \mathbf{1}$, с неплотным клапаном $\mathbf{e}_2 = \mathbf{3}$, присоединительный штекер с резьбой $\mathbf{e}_3 = \mathbf{2}$, $\mathbf{e}_4 = \mathbf{9}$ пожарный.

Укомплектованность поставок

- 2 насос с муфтой.
- 3 насос с муфтой, двигателем, кабельные соединения.
- 4 насос с муфтой, двигателем, оборудованием для подсоединения кабеля, кабельные соединения.
- 5 насос с муфтой, двигателем, кабельные соединения, защитное устройство.
- 7 насос с муфтой, двигателем, оборудованием для подсоединения кабеля, кабельные соединени, предохраняющие устройство.
- 9 Укомплектованность согласно контракту.


Охлаждение двигателя. Предохранение двигателя.

- 1. стандартный
- 2. специальный

Структура обозначения изделия

Все основные информации о насосе закодированы в его обозначении. Это обозначение содержится как в этом каталоге, так и на табличке насоса. Это облегчает нашим клиентом не только подбор самого подходящего насоса, но также контакт с нами в период эксплуатации, например при заказе запасных частей.

Код обозначения насоса составляется согласно нижеприведенной схеме:

Пример полного обозначения изделия

GC.5.10.4.1129.4.530.1

Насос GC.S, десятиступеньчатый, в исполнении материалов 4, с двигателем 8': с непроницаемым клапаном, с выходным штекером с резьбой, в комплекте поставок 4, подбор агрегата 530 (по внутреннему код производителя) Защитный слой стандартный.

На знаменательной табличке находится только обозначение конструкторского выполнения это означает: **GC.5.10.4.1129**

Подбор питающего кабепя

Сечения питающих проводов качающих составов надо подбирать используя:

- диаграмму и таблицу 1 для двигателей с непосредственным пуском (страница 7),
- диаграмму и таблицу 2 для двигателей с пуском звезда треугольник (страница 8),

Диаграммы указывают максимальные длины питающих проводов в зависимости от величины тока при питающем напряжении $U_{...} = 400$ Вольт, падении напряжения 3% и температуре t = +25°C.

При знаменательных напряжениях других, чем 400 Вольт сечение провода надо подбирать согласно уместным диаграммам, корректируя величину тока по формуле:

$$I = I_{_{3H}} x \quad \frac{400}{U_{_{3H}}}$$

Для температур выше чем +25°C после произведения подбора проводов по диаграммам надо проверить допус-тимую токовую нагрузку по таблице 1 и 2 и откорректировать его сечение.

Пример:

Подобрать сечение питающего провода для двигателя с непосредственным пуском при:

- знаменательном напряжении Uзн = 400 Волы:
- знаменательной ток 40 А,
- требуемая длина провода 300 м,
- температура окружающей среды +45°C

По диаграмме 1 для тока 40 A и длины провода 300 м получаем сечение провода 35 мм². Максимальная допустимая длина провода при этом сечении для тока 40 A равняется 360 м. Падение напряжения для 300 м равно:

$$\Delta U = \frac{300}{360} \times 3\% = 2,5\%$$

Меньшее сечение провода 25 мм² при токовой нагрузке 40 А может использоваться до длины 260 м. При длине 300 м падение напряжения равняется:

$$\Delta U = \frac{300}{260} \times 3\% = 3,46\%$$

Правильный подбор это провод 35 мм² с падением напряжения 2,5%.

Проверка токовой нагрузки:

При температуре 45°С и сечении 35 мм² допустимая максимальная токовая нагрузка для 3-жильного провода согласно таблице 1 равно 120 А, значит подбор провода правильный и достаточныи.

Пример:

Подобрать сечение питающего провода для двигателя с непосредственным пуском при:

- знаменательном напряжении Uзн = 1000 Вольт
- знаменательной ток 100 А,
- требуемая длина провода 200 м,
- температура окружающей среды +30°C

$$I = 100 \times \frac{400}{1000} = 40 \text{ A}$$

По диаграмме 1 для тока 40 A и длины провода 300 м получаем сечение провода 35 мм². Максимальная допустимая длина провода для этого сечения для тока 40A равняется 360 м. Падение напряжения для 300 м равно:

$$\Delta U = \frac{200}{360} \times 3\% = 1,67\%$$

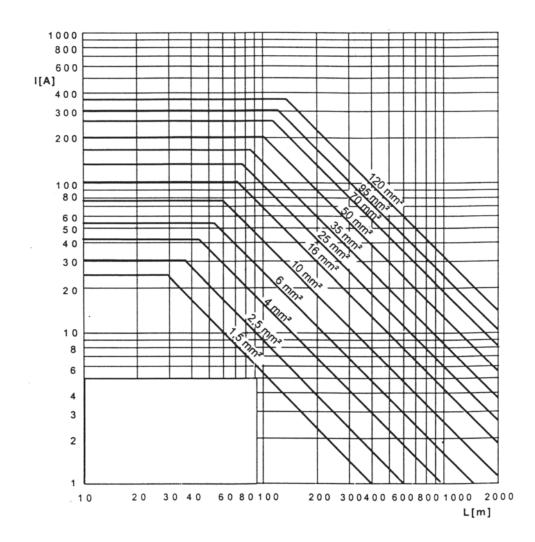
Сечение на ступень ниже 25 мм2 при токовой нагрузке 40 А может быть использовано до длины 260 м. При длине 200 м падение напряжения получается:

$$\Delta U = \frac{200}{260} \times 3\% = 2,30\%$$

Проверку токовой нагрузки надо выполнить для знаменательного тока **Ізн** = **100 A** по таблице 1. Допустимая максимальная токовая нагрузка при 30°C составляет 128 A. Значит сечение достаточное.

Подбор сечения питающего провода для непосредственного пуска

Таблица амперных нагрузок проводов питающих подводные насосные устройства в соответствии с распоряжением № 29 Министерства Горной и Энергетической Промышленности от 17.07ю1974, а также VDE для предельных температур проводов 60°C.


ТАБЛИЦА № 1

Температура окружающей среды	25°C	30°C	35°C	40°C	45°C	50°C
Coupuid nus		Пр	едельные нагрузки д	ля 3 жильных проводо	В	
Сечение мм²			Номинальный т	ок двигателя в А		
1,5	25	23	21	19	17	13
2,5	34	31	29	25	23	18
4	45	41	38	34	31	24
6	58	53	49	43	40	31
10	80	73	67	60	55	42
16	107	98	90	80	74	57
25	139	128	117	104	96	74
35	174	160	146	130	120	92
50	216	199	181	162	149	114
70	267	246	224	200	184	143
95	322	296	270	242	222	171
120	369	340	310	276	255	195

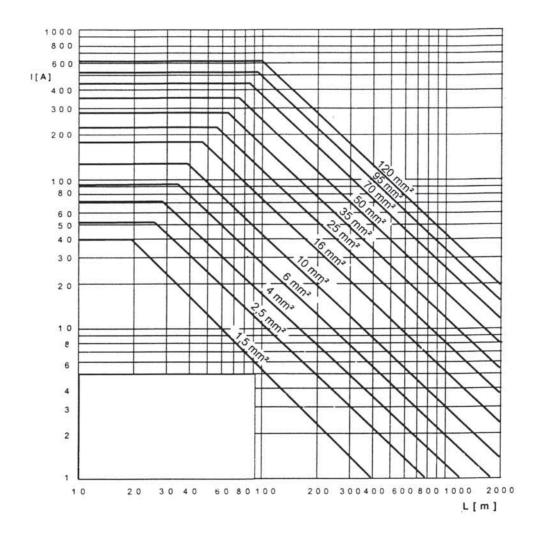
Сечения проводов для 400 в

Падения напряжения 3%; температура окружающей среды 25° C; $\cos \varphi = 0.85$.

ДИАГРАММА № 1

Подбор сечения питающего провода для пуска звезда - триугольник

Таблица амперных нагрузок проводов питающих подводные насосные устройства в соответствии с распоряжением № 29 Министерства Горной и Энергетической Промышленности от 17.07ю1974, а также VDE 0298 для предельных температур проводов 60°С.


ТАБЛИЦА № 2

Температура окружающей среды	25°C	30°C	35°C	40°C	45°C	50°C
Сечение мм²		Пр	едельные нагрузки д	ля 3 жильных провод	0В	
сечение мм-			Номинальный то	ок двигателя в А		
1,5	43	39	36	32	29	23
2,5	58	53	48	43	40	31
4	77	71	65	57	53	41
6	100	92	84	75	69	53
10	137	126	115	103	94	72
16	184	169	155	138	127	97
25	239	220	205	179	165	126
35	300	276	252	225	205	159
50	374	344	289	280	258	198
70	460	423	355	345	318	244
95	555	510	466	416	383	294
120	636	585	535	476	439	336

Сечения проводов для 400 в

Падения напряжения 3%; температура окружающей среды 25° C; $\cos \varphi = 0.85$.

ДИАГРАММА № 2

Охлаждение двигателя

Электрическим, глубинным двигателям ставится определённые требования, касающиеся скорости оплыва двигателя как:

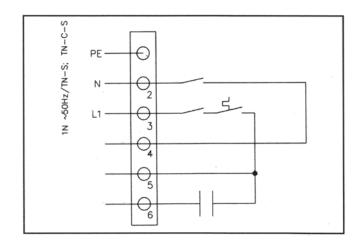
Тип двигателя	Оплыв двигателя	Температура качаемой жидкости
	m/c	°C
Двигателя 4"	0,08	30
SMV	0,2	25
SMH	0,2	25

Расчет скорости оплыва:

$$V = \frac{Q}{2826 (D_s^2 - d_s^2)} [m/c]$$

Где: ${f Q}$ - производительность насоса [м³/час], ${f D}_{{f s}}$ - внутренние диаметры колодца [M], ${f d}_{{f s}}$ - диаметр двигателя [M]

Внимание: в случае, когда $V_{pасчетное} < V_{требуемое}$ надо на двигателе строить засасывающий плащ с внутренним диаметром, выполняющим условия получения нужной скорости оплыва. Двигатель **SMV.4** не нуждается в засасывающем плаще так/ как он может работать в воде с температурой до 35°C.


Предохранение двигателя

Предохраняемое устройство типа AMS

Предохранительно-управляющее устройства необходимые для глубинных насосов с однофазными двигателями мощностью в 0,37 - 2,2 кВт 1 x 230V 50 Гц предлагаются в двух исполнениях:

- Устройства AMS для двигателей мощностью в 0,37 1,5 кВт как и AM для двигателей мощностью в 2,2 кВт.
- Устройства эти содержат пусковой конденсатор, а также термическое предохранение предохраняемое двигатель от последствий перегрузок и выключатель.

Тип устройства	Мощность двигателя (кВт)	Напряжение питания (Вольт)	Знаменательный ток (A)	Ёмкость конденсатора (μF)
AMS/0,5 S	0,37	230	4,1	12
AMS/0,75 S	0,55	230	5,6	20
AMS/1,0 S	0,75	230	7,0	30
AMS/1,5 S	1,10	230	9,6	40
AMS/2,0 S	1,50	230	11,5	50
AMS/3.0 S	2.20	230	15.0	70

Предохранение двигателя

Предохраняемое устройство типа UZS 4

Предназначение

Предохранительно-управляющее устройство UZS 4 предназначается для предохранения работы трёхфазных, асинхронных двигателей качающих составов мощностью с 0,55 кВт по 9 кВт.

Предохранительно-управляющее устройство UZS 4 предохраняет двигатель от последствий:

- а) короткого замыкания,
- б) перегрузки,
- в) исчезновения фазы,
- г) асимметрии питания,
- д) понижения питающего напряжения,
- е) работы "вхолостую",
- ё) слишком большого количества включений.

Условия работы

Предохранительно-управляющее устройство **UZS 4** приспособлены для работы в условиях умеренного климата при температуре окружающей среды $c-10^{\circ}$ C до $+40^{\circ}$ C (как опция $c-30^{\circ}$ C с использованием подогревателя внутри корпуса устройства), при относительной влажности воздуха с 80% при 20° C, в среде свободной от воды и пыли, взрывающихся, воэгорающихся или химически активных пар и газов. Высота места инсталляции не должна превышать 1000м над уровнем моря.

Конструкция

Устройство **UZS 4** состоит из четырёх модулей: электронной части контроля напряжения, электронной части уровня воды, термической части излишнего тока и сверхтокового выключателя. Состав **UZS 4** находится в герметическом, пластмассовом корпусе, в котором находятся ниже перечисленные составные части.

- реле типа CI
- термический передатчик TI
- электронный контрольный модуль с сигнализационными лампочками
- выключатель питания поворачиваемый соединитель с двумя положениями

Технические данные

Tип UZS 4

Номинальное напряжение питания 3 x 400 V (3 x 380 V), 50 Hz, схема TN-C-S, TN-S

Знаменательный ток od 1,2 A по 20 A (в зависимости от мощности двигателя) по нижеприведен ной

таблице

Требование мощности электронным модулем 4 Вольт Ампер

Ток электродов зондов max 6 mA

Температура работы устройства $-10^{\circ}\text{C} \div +40^{\circ}\text{C} \ (-30^{\circ}\text{C} \div +40^{\circ}\text{C})$

 Степень защиты корпуса
 IP65

 Масса
 1,5 кг

Nō	Тип устройства	Ориентировочная максимальная	Диапазон настроек	Габариты Высота х ширина х глубина
		мощность двигателя	перегрузочного реле	MM
1	UZS4.01	0,55 кВт	1,2 - 1,9 A	
2	UZS4.02	0,75 кВт	1,8 - 2,8 A	
3	UZS4.03	1,5 кВт	2,7 - 4,2 A	
4	UZS4.04	2,2 кВт	4 - 6,2 A	
5	UZS4.05	3,7 кВт	6 - 9,2 A	250 x 165 x 140
6	UZS4.06	4,5 кВт	8 - 12 A	
7	UZS4.07	5,5 кВт	11 - 16 A	
8	UZS4.08	7,5 кВт	15 - 20 A	
9	UZS4.09	9 кВт	15 - 20 A]

Предохранение двигателя

Предохраняемое устройство типа UZS 5

Предназначение

Предохранительно-управляющее устройства UZS 5 предназначаются для предохранения работы трёхфазных асинхронных электрических двигателей качающих составов мощностью с 0,55 кВт по 185 кВт.

Предохранительно-управляющее устройство UZS 5 предохраняет двигатель от последствий:

- а) короткого замыкания,
- б) перегрузки,
- в) исчезновения фазы,
- г) асимметрии питания,

Условия работы

Предохранительно-управляющее устройства **UZS 5** приспособлены для работы в условиях умеренного климата при температуре окружающей среды с -70°С до +40°С (как опция с -30°С с использованием подогревателя внутри корпуса устройства), при относительной влажности воздуха с 80% при 20°С, в среде свободной от воды и пыли, взрывающихся, возгорающихся или химически активных пар и газов. Высота места инсталляции не должна превыиать 1000м над уровнем моря.

Конструкция

Устройство UZS 5 состоит из модулей: программируемого командоконтроллера надзора предохранений, сверхтокового выключателя, исполнительных и замеряющих аппаратов, как и соединительных частей.

Технические данные

Tип UZS 5

Номинальное напряжение питания 3 x 400 V (3 x 380 V), 50 Hz, схема TN-C-S, TN-S

Знаменательный ток с 1,2 А по 400 А (В зависимости от мощности двигателя)

по таблице №

 Вспомогательное напряжение
 220 / 230 Вольт

 Частота
 50 / 60 Гц

 Требование мощности электронным модулем
 20 мА

Поставочный ток (знаменательный ток двигателя) (с 0,2 по 1) * InA

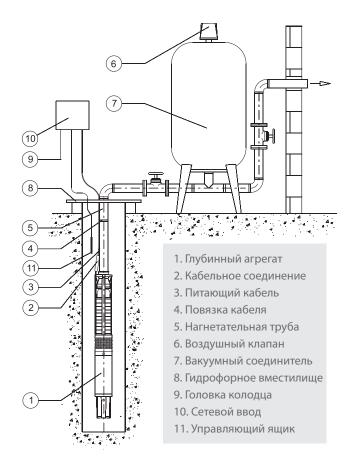
Температура работы устройства $-25^{\circ}\text{C} \div +60^{\circ}\text{C}$ исполнение 1 (-30 $^{\circ}\text{C} \div +60^{\circ}\text{C}$ исполнение 2)

Степень защиты корпуса IP55

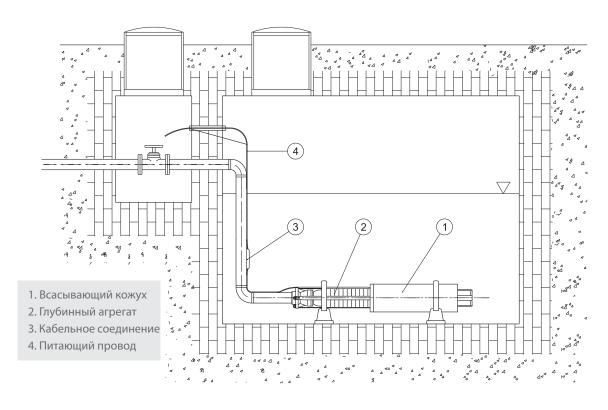
Nº	Тип устройства	максимальная		Габариты Высота х ширина х глубина
		мощность двигателя	перегрузочного реле	MM
1	UZS5.01	2,2 кВт	6 A	
2	UZS5.02	3 кВт	9 A	
3	UZS5.03	4 кВт	12 A	
4	UZS5.04	5,5 кВт	15 A	
5	UZS5.05	7,5 кВт	20 A	
6	UZS5.06	9 кВт	25 A	400 x 300 x 200
7	UZS5.07	11 кВт	30 A	400 x 300 x 200
8	UZS5.08	15 кВт	37 A	
9	UZS5.09	18,5 кВт	45 A	
10	UZS5.10	22 кВт	50 A	
11	UZS5.11	26 кВт	60 A	
12	UZS5.12	33 кВт	72 A	
13	UZS5.13	40 кВт	86 A	600 x 400 x 250
14	UZS5.14	75 кВт	145 A	
15	UZS5.15	90 кВт	180 A	800 x 600 x 400
16	UZS5.16	185 кВт	400 A	

Потерии высоты давления

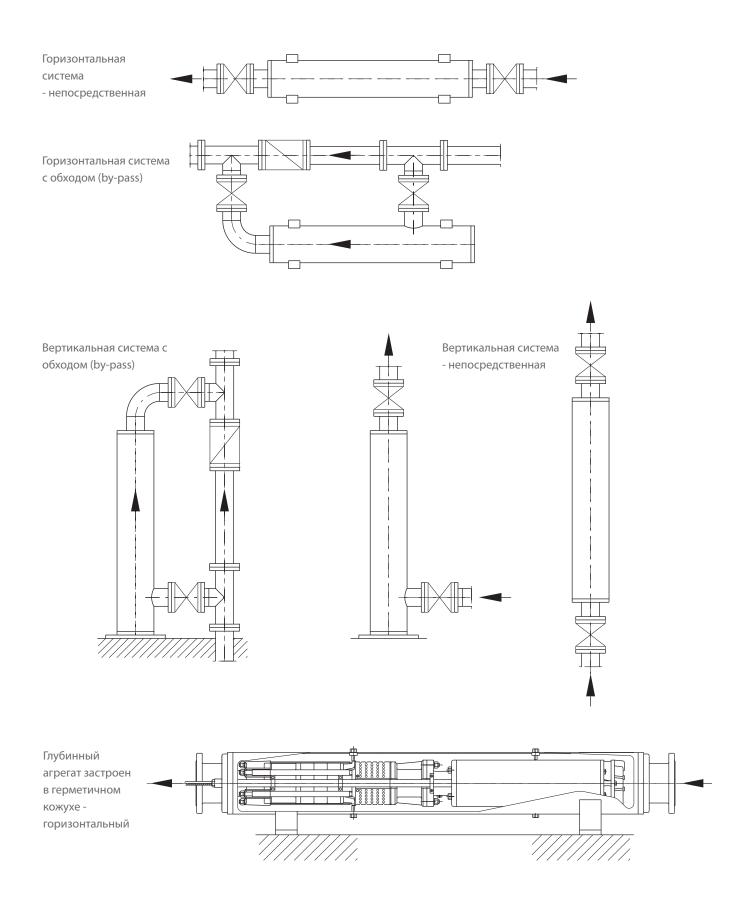
Час	:овой					ПОТЕРИЯ	Я ДАВЛЕНИЯ	В СТАЛЬНЫ	Х ТРУБАХ				
pa	сход					Диамет	р наружный	і́ и внутрені	ний [мм]				
M³/4	л/мин	1/2″ 15,75	3/4″ 21,25	1″ 27,00	1 1/4" 35,75	1 1/2" 41,25	2″ 52,50	2 1/2" 68,00	3″ 80,25	3 1/2" 92,50	4″ 105,0	5″ 130,0	6″ 155,5
0,6	10	9,90	2,40	0,80									
0,9	15	20,00	4,90	1,60	0,40								
1,2	20	33,50	8,00	2,60	0,70	0,35							
1.5	25	50.00	12.00	4,00	1.00	0,50							
1,8	30	69,50	16,50	5,30	1,40	0,70	0,25						
2,1	35	91.50	21,50	7,00	2.00	0.90	0.30						
2,4	40	, , , , , , , , , , , , , , , , , , , ,	27,70	8,80	2,30	1.20	0,40						
3,0	50		41,50	13,00	3,50	1,70	0,55	0,16					
3,6	60		57,50	18,50	4,80	2,40	0,75	0,22					
4,2	70		76,50	24,00	6,50	3,00	1,00	0,30	0,15				
4,8	80			30,90	8,00	4,00	1,30	0,40	0,18				
5,4	90			38,50	9,90	5,00	1,60	0,50	0,21				
6,0	100			46,50	12,00	6,00	2,00	0,60	0,25	0,13			
7,5	125			70,50	18,00	9,00	3,00	0,85	0,36	0,18	0,10		
9,0	150				25,00	12,00	4,00	1,15	0,50	0,26	0,14		
10,5	175				33,50	16,70	5,20	1,50	0,65	0,35	0,19		
12,0	200				42,50	21,50	6,60	1,90	0,85	0,45	0,25	0,10	
15,0	250				64,90	32,30	10,00	2,90	1,30	0,65	0,35	0,13	
18,0	300					45,50	14,00	4,00	1,80	0,90	0,50	0,17	0,10
24,0	400					78,20	24,00	6,90	3,10	1,50	0,85	0,30	0,13
30,0	500						36,50	10,50	4,70	2,40	1,30	0,50	0,20
36,0	600						51,80	14,70	6,50	3,30	1,80	0,65	0,25
42,0	700							19,50	8,70	4,40	2,40	0,85	0,35
48,0	800							25,20	11,50	5,60	3,10	1,00	0,45
54,0	900							31,50	14,00	7,00	3,75	1,33	0,55
60,0	1000							38,50	17,00	8,50	4,60	1,60	0,68
75,0	1250								26,00	13,00	7,10	2,50	1,10
90,0	1500								39,90	18,50	9,90	3,50	1,45
105,0	1750									24,80	13,50	4,70	1,95
120,0	2000									31,90	17,50	6,00	2,50
150,0	2500										26,50	9,30	3,80
180,0	3000											13,10	5,50
240,0	4000											22,80	9,00
300,0	5000												14,50

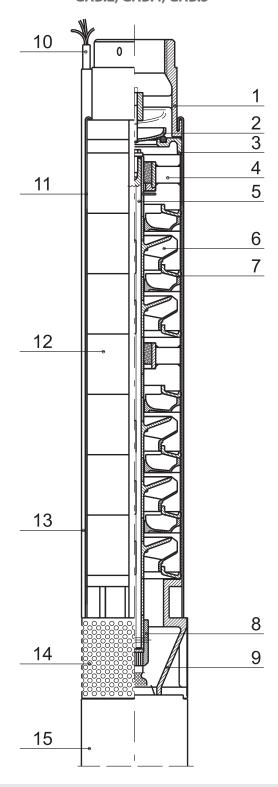

Указанные значения потери давления в метрах относятся к 100 м прямолинейного отрезка трубопровода. В спучае применения по трассе трубопровода лополнительного элемента (колено, тройник, возвратный клапан, запорная задвижка) к длине прямолинейного отрезка трубопровода добавляем 5 м в связи сна каждый с выше указанных дополнительных элементов.

	овой							В СТАЛЬНЫ					
pac	ход					Диамет	р наружный	і и внутренн	ий [мм]				
M³/4	л/мин	25 20,4	32 26,2	40 32,6	50 40,8	63 51,4	75 61,4	90 73,6	110 90,0	125 102,2	140 114,6	160 130,6	180 147,2
0,6	10	1,8	0,7	0,3	0.09								
0,9	15	4,0	1,2	0,6	0,20	0,006							
1,2	20	6,4	2,2	0,9	0,30	0,11							
1,5	25	10.0	3.5	1,4	0.50	0,18	0.09						
1,8	30	13.0	4,5	2,0	0,60	0,22	0,10						
2,1	35	16.0	6,0	2,5	0,70	0,27	0,12						
2,4	40	22.0	7,5	3,4	0.95	0,35	0,16	0.07					
3,0	50	37,0	11,0	4,8	1,40	0,50	0,25	0,09					
3,6	60	43,0	15,0	6,5	1,90	0,70	0,35	0,13	0,06				
4,2	70	50.0	18.0	8.0	2,50	0.80	0,40	0,18	0.07				
4,8	80		25.0	10.5	3,00	1,30	0,50	0,25	0,08				
5,4	90		30,0	12,0	3,50	1,40	0,60	0,30	0,09	0.05			
6,0	100		39,0	16,0	4,60	1,80	0,70	0,35	0,12	0,07			
7,5	125	İ	50,0	24,0	6,60	2,50	1,10	0,50	0,20	0,10	0.06		
9,0	150			33,0	8,50	3,50	1,40	0,60	0,25	0,15	0,08		
10,5	175	İ		38,0	11,00	4,50	1,80	0,80	0,30	0,18	0,09		
12,0	200			50,0	14,00	5,50	2,40	1,00	0,40	0,21	0,12	0,06	
15.0	250			, i	21,00	8,00	3,70	1,50	0,60	0,35	0,18	0,10	0,0
18,0	300				28,00	10,50	4,60	1,90	0,80	0,45	0,25	0,15	0,0
24,0	400					19,00	8,00	3,60	1,40	0,80	0,45	0,25	0,
30,0	500	İ				28,00	11,50	5,00	2,00	1,20	0,65	0,35	0,
36,0	600					37,00	15,00	6,60	2,60	1,50	0,80	0,45	0,
42,0	700					47,00	24,00	8,00	3,50	1,90	1,10	0,60	0,4
48,0	800						26,00	11,00	4,50	2,60	1,40	0,80	0,
54,0	900						33,00	13,50	5,50	3,20	1,70	0,95	0,0
60,0	1000						40,00	16,00	6,50	4,00	2,20	1,20	0,
75,0	1250							25,00	9,00	5,00	3,00	1,60	0,9
90,0	1500							33,00	13,00	8,00	4,10	2,30	1,4
05,0	1750							40,00	17,50	9,80	5,80	3,30	2,0
20,0	2000								23,00	13,00	7,00	4,00	2,5
50,0	2500								34,00	18,00	10,50	6,00	3,
80,0	3000								45,00	27,00	14,00	7,50	5,
240,0	4000									43,00	24,00	13,00	7,5
0,00	5000		İ								33,00	18.00	11.0



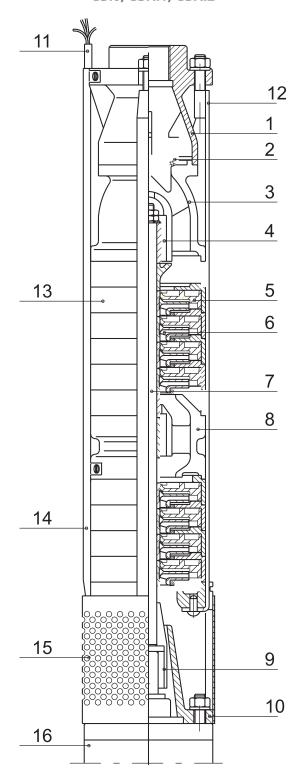
Примеры установки


Вертикальная установка

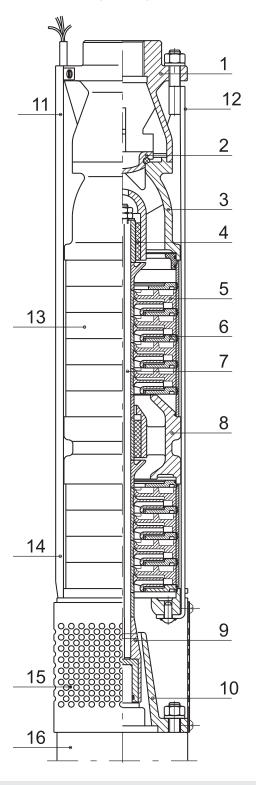

Горизонтальная установка

Альтернативные способы застройки глубинных агретатов

GAB.2, GAB.4, GAB.5

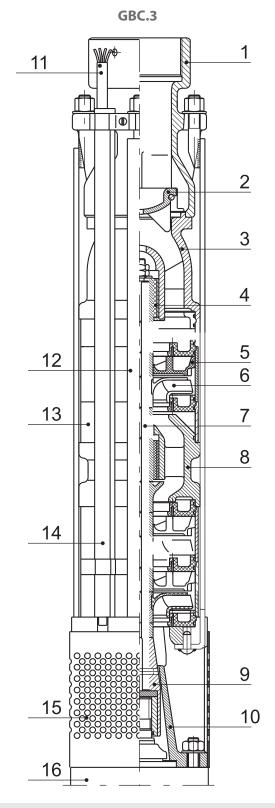


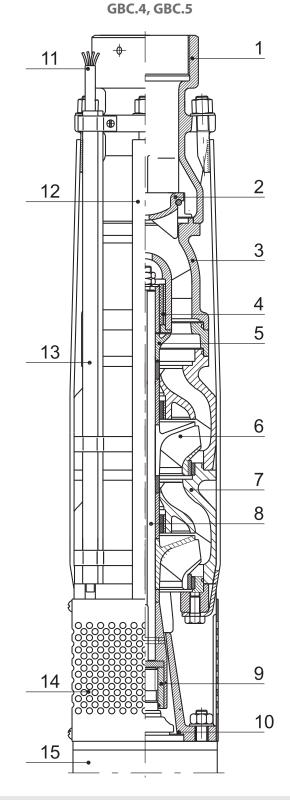
- 1. Нагнетательный корпус
- 2. Грибок возвратного клапана
- 3. Корпус возвратного клапана
- 4. Подшипниковый корпус
- 5. Вал насоса
- 6. Ротор
- 7. Направляющая
- 8. Сцепление


- 9. Засасывающий корпус
- 10. Питающий провод
- 11. Соединяющая лента
- 12. Средний корпус
- 13. Защита провода
- 14. Решеточная жесть
- 15. Двигатель

GBC.0, GBC.1, GBC.2

- 1. Нагнетательный корпус
- 2. Возвратный клапан
- 3. Корпус возвратного клапана
- 4. Металпическо-резиновый подшипник
- 5. Направляющая
- 6. Ротор
- 7. Вал
- 8. Подшипниковый корпус

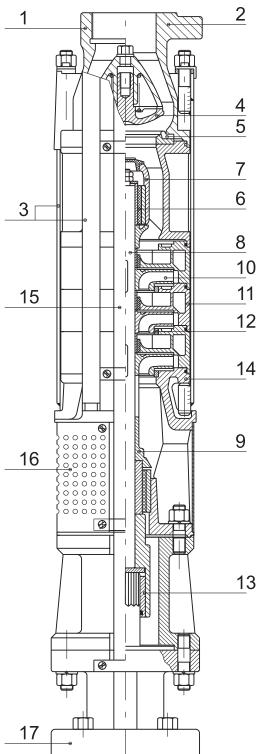

- 9. Сцепление
- 10. Засасывающий корпус
- 11. Питающий провод
- 12. Соединяющая лента
- 13. Средний корпус
- 14. Защита провода
- 15. Решеточная жесть 16. Двигатель
- 1. Нагнетательный корпус
- 2. Возвратный клапан
- 3. Корпус возвратного клапана
- 4. Металлическо-резиновый подшипник
- 5. Направляющая
- 6. Ротор
- 7. Вал
- 8. Подшипниковый корпус


- 9. Сцепление
- 10. Засасывающий корпус
- 11. Питающий провод
- 12. Соединяющая лента
- 13. Средний корпус
- 14. Защита провода

16. Двигатель

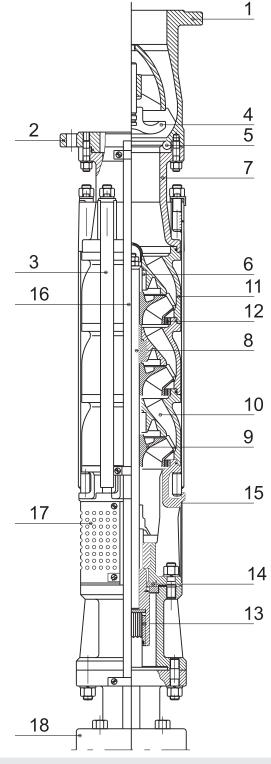
15. Решеточная жесть

- 1. Нагнетательный корпус
- 2. Возвратный клапан
- 3. Корпус возвратного клапана
- 4. Металлическо-резиновый подшипник
- 5. Направляющая
- б. Ротор
- 7. Вал
- 8. Подшипниковый корпус


- 9. Сцепление
- 10. Засасывающий корпус
- 11. Питающий провод
- 12. Соединяющая лента
- 13. Средний корпус
- 14. Защита провода15. Решеточная жесть
- 16. Двигатель

- 1. Нагнетательный корпус
- 2. Возвратный клапан
- 3. Корпус возвратного клапана
- 4. Металлическо-резиновый подшипник
- 5. Защита от песка
- 6. Ротор
- 7. Средний корпус
- 8. Вал

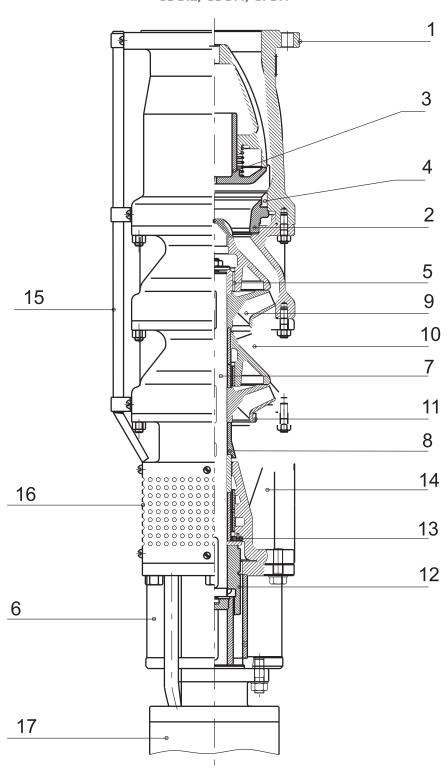
- 9. Сцепление
- 10. Засасывающий корпус
- 11. Питающий провод
- 12. Соединяющая лента
- 13. Защита провода
- 14. Решеточная жесть
- 15. Двигатель



- 1. Засасывыающий корпус с резьбой
- 2. Засасывыающий корпус с фланцевым соединением
- 3. Соединяющая лента
- 4. Грибок возвратного клапана
- 5. Уплотнение возврвтного клапана
- 6. Металлическо-резиновый подшипник
- 7. Подшипниковый корпус
- 8. Вал

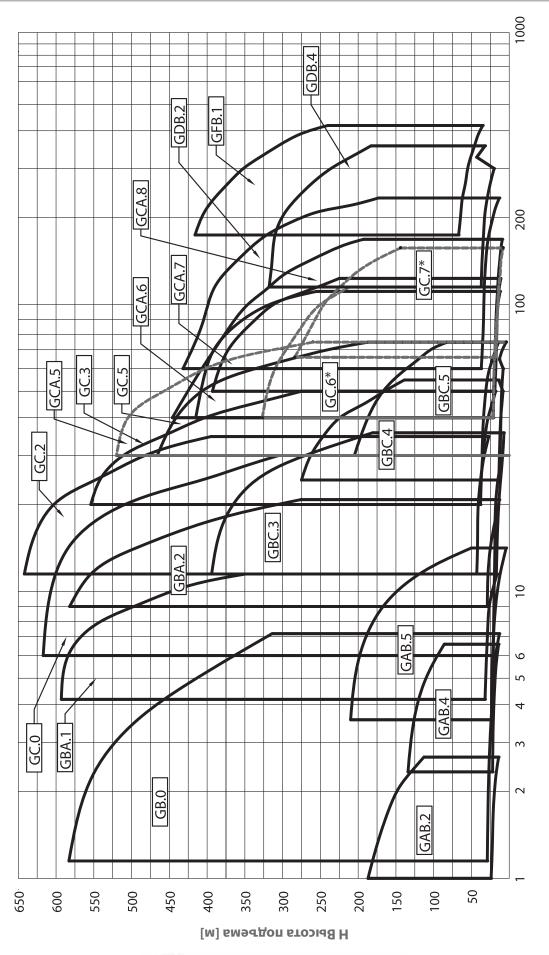
- 9. Защита от песка
- 10. Ротор
- 11. Средний корпус
- 12. Уплотнение подвижного кольца
- 13. Сцепление
- 13. Засасывающий корпус
- 14. Защита провода
- 15. Решеточная жесть
- 16. Двигатель

GCA.6, GCA.7, GCA.8

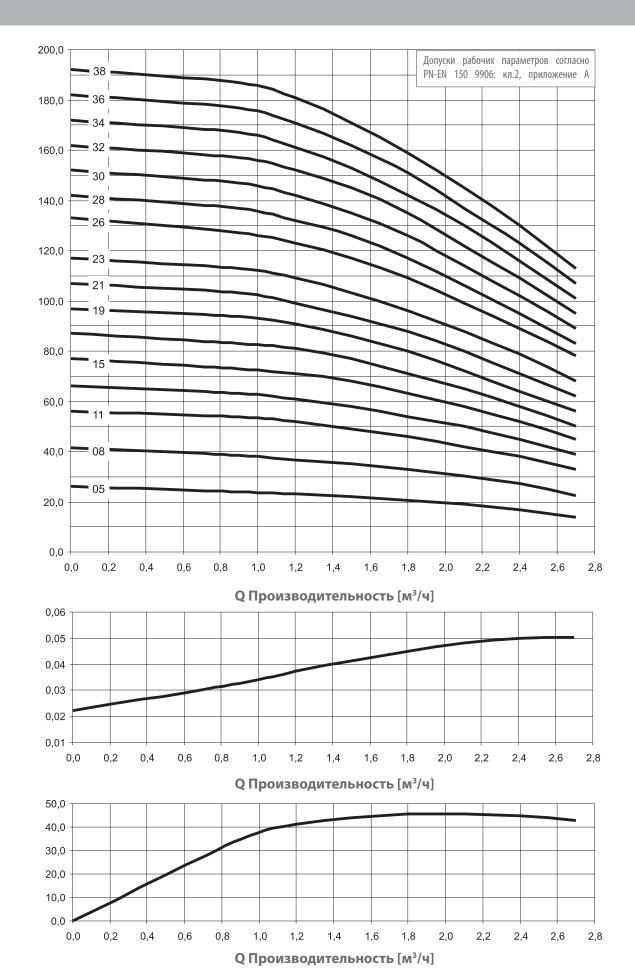


- 1. Засасывыающий корпус
- с фланцевым соединением
- 2. Фланец в исполнении без возврвтного клапана
- 3. Соединяющая лента
- 4. Грибок возвратного клапана
- 5. Уплотнение возврвтного клапана
- 6. Металлическо-резиновый подшипник
- 7. Подшипниковый корпус 8. Вал

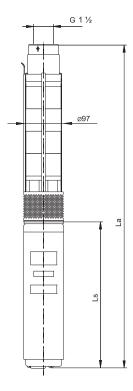
- 9. Защита от песка
- 10. Ротор
- 11. Средний корпус
- 12. Уплотнение подвижного кольца
- 13. Сцепление
- 14. Засасывающий корпус
- 15. Защита провода
- 16. Решеточная жесть
- 17. Двигатель


- 1. Засасывыающий корпус с фланцевым соединением
- 2. Гнездо возврвтного клапана
- 3. Грибок возвратного клапана
- 4. Уплотнение возврвтного клапана
- 5. Металлическо-резиновый подшипник
- 6. Соединительный корпус
- 7. Вал
- 8. Защита от песка

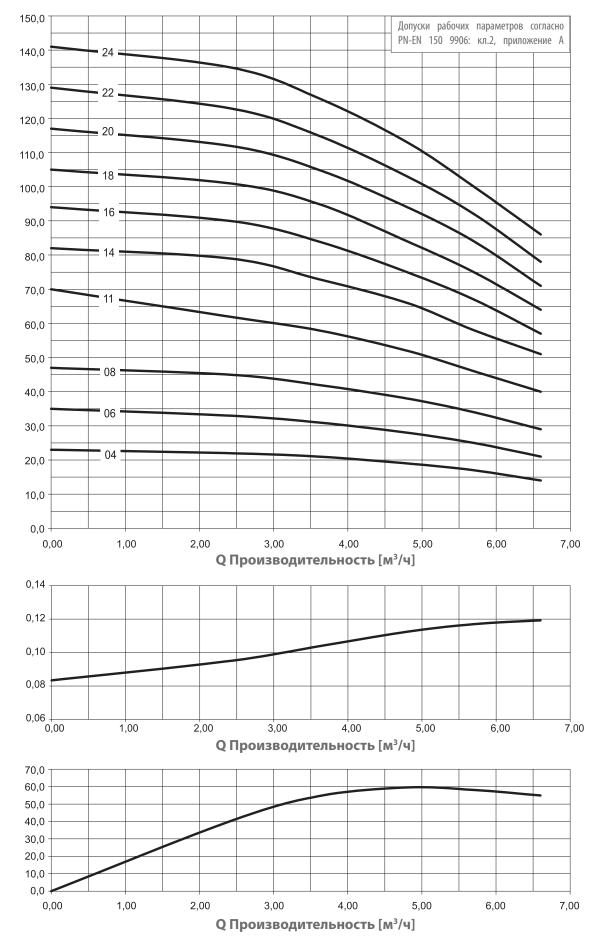
- 9. Ротор
- 10. Средний корпус
- 11. Уплотнение подвижного кольца
- 12. Сцепление
- 13. Засасывающий корпус
- 14. Защита провода
- 15. Решеточная жесть
- 16. Двигатель

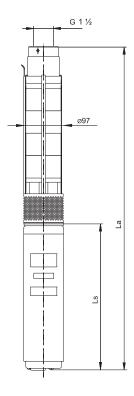

ХАРАКТЕРИСТИКИ

Общая диаграмма


Q Производительность [м³/ч]

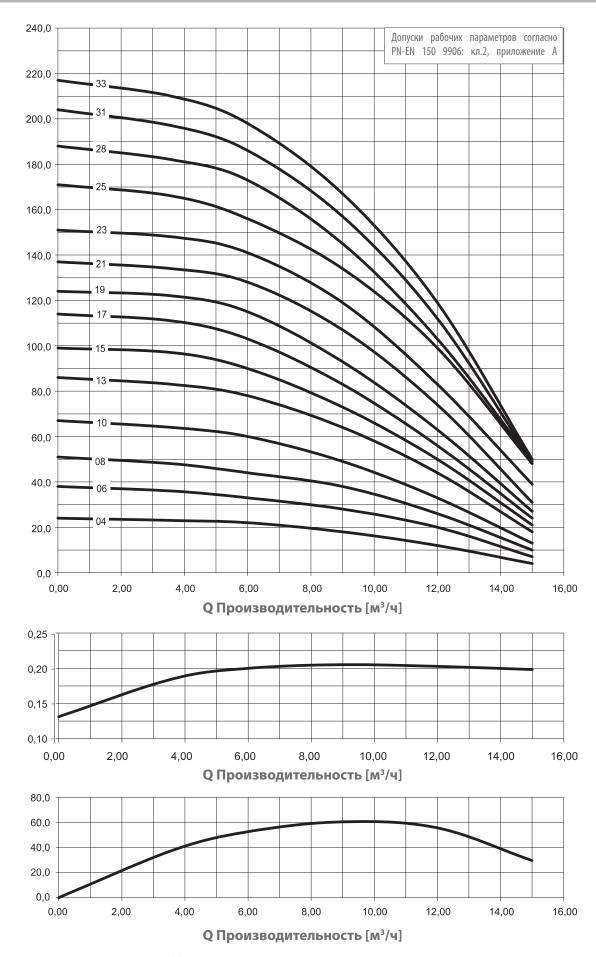
*- снатое с производства


GAB.2

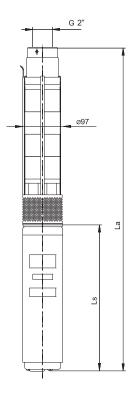

Обозна- чение	Мощ- ность	Масса насоса			SMV-4					SMK-4		
насоса	насоса (кВт)	(кг)	ľ,	L,	L,	Мощность двигателя кВт	состава КГ	L _a	L,	L _s	Мощность двигателя кВт	состава кг
GAB.2.05	0,33	4,7	703* 683	371	332* 312	0,37	12,6* 11.8	773* 717	371	402* 346	0,37	13,2* 14.1
GAB.2.08	0,52	5,1	797* 767	435	362* 332	0,55	14,2*	837* 781	435	402* 346	0,55	13,6* 14.5
GAB.2.11	0,71	5,5	892* 862	500	392* 362	0,75	16,0* 14.7	922* 846	500	422* 346	0,75	15,3* 15,1
GAB.2.13	0,77	5,9	975* 935	543	432* 392	1,10	17,9* 16.4	995* 919	543	452* 376	1,10	16,9* 16.7
GAB.2.15	0,83	6,4	1018* 978	586	432* 392	1,10	18,4* 16.9	1038* 962	586	452* 376	1,10	17,4* 17.2
GAB.2.17	0,94	6,8	1061* 1021	629	432* 392	1,10	18.8* 17.3	1081* 1005	629	452* 376	1,10	17,8* 17.6
GAB.2.19	1,04	7,3	1104* 1064	672	432* 392	1,10	19,3* 17.8	1124* 1048	672	452* 376	1,10	18,3* 18.1
GAB.2.21	1,15	7,7	1207* 1147	715	492* 432	1,50	22,3* 20.5	1207* 1121	715	492* 406	1,50	20,0* 19.7
GAB.2.23	1,26	8,5	1293* 1233	801	492* 432	1,50	23,1* 20.5	1293* 1207	801	492* 406	1,50	20,8* 20.5
GAB.2.26	1,43	9,1	1358* 1298	866	492* 432	1,50	23,7*	1358*	866	492* 406	1,50	21,4*
GAB.2.28	1,54	9,5	1481* 1401	909	572* 492	2,20	27,6* 24.3	1471* 1377	909	562* 468	2,20	24,5* 25.3
GAB.2.30	1,65	9,9	1524* 1444	952	572* 492	2,20	28,0* 24.7	1514* 1420	952	562* 468	2,20	24,9* 25.7
GAB.2.32	1,76	10,3	1567* 1487	995	572* 492	2,20	28,4*	1557* 1463	995	562* 468	2,20	25,3* 26.1
GAB.2.34	1,87	10,7	1610* 1530	1038	572* 492	2,20	28.8*	1600* 1506	1038	562* 468	2,20	25,7* 26.5
GAB.2.36	1,98	11,1	1653* 1573	1081	572* 492	2,20	25,5 29,2* 25,9	1643* 1549	1081	562* 468	2,20	26,1* 26,9
GAB.2.38	2,09	11,5	1696* 1616	1124	572* 492	2,20	29,6* 26,3	1686* 1592	1124	562* 468	2,20	26,5* 27,3

^{*}касается двигателя 1~

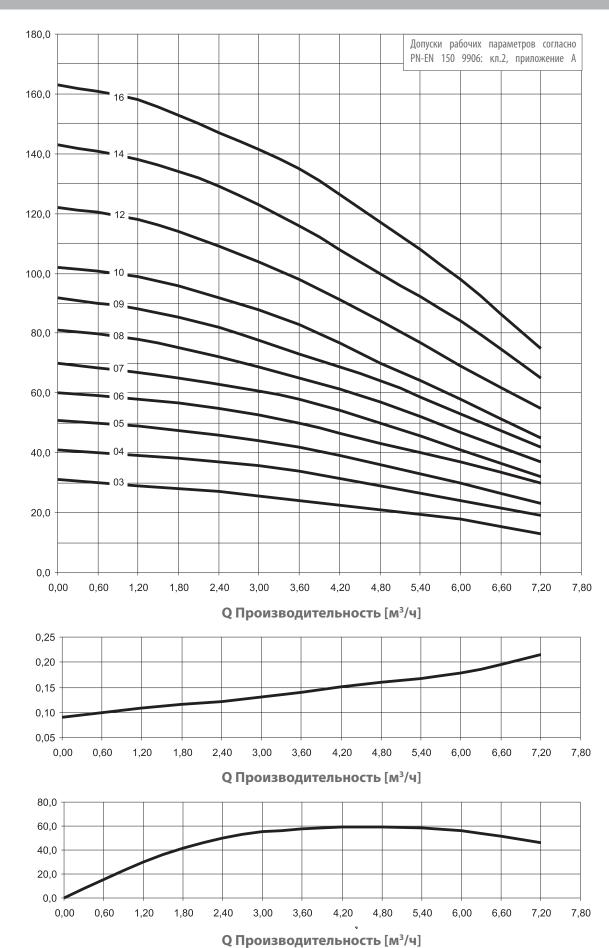
			Произ	зодител	ьность (Q [m³/4]		
0.0	0	0,9	1,2	1,5	1,8	2,1	2,4	2,7
Обозначение насоса			Произв	одитель	ность Q	[л/мин]		
пасоса	0	15	20	25	30	35	40	45
				Н	[м]			
GAB.2.05	26	24	23	22	21	19	17	14
GAB.2.08	40	39	38	36	34	31	28	23
GAB.2.11	56	54	52	49	46	42	38	33
GAB.2.13	66	63	61	58	54	50	45	39
GAB.2.15	77	73	71	68	63	58	52	45
GAB.2.17	87	83	81	77	71	65	58	50
GAB.2.19	97	94	91	86	80	72	64	56
GAB.2.21	107	103	99	94	88	80	71	62
GAB.2.23	117	113	109	103	96	88	79	68
GAB.2.26	133	128	123	117	109	99	89	78
GAB.2.28	142	137	132	126	117	106	95	83
GAB.2.30	152	147	142	135	126	114	102	89
GAB.2.32	162	157	152	145	135	122	109	95
GAB.2.34	172	167	161	153	142	130	116	101
GAB.2.36	182	177	171	162	151	137	123	107
GAB.2.38	192	187	181	171	159	145	130	113

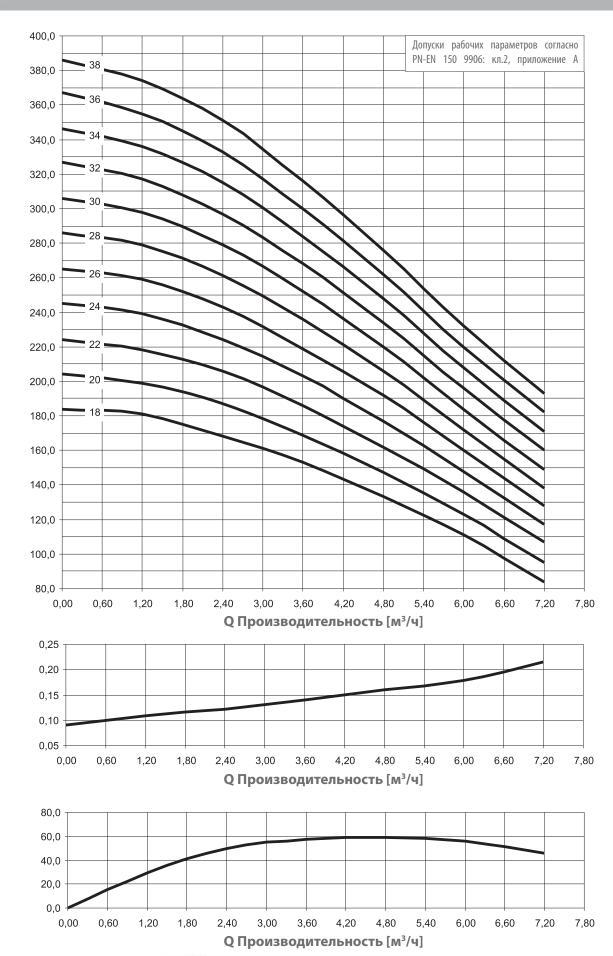

GAB.4

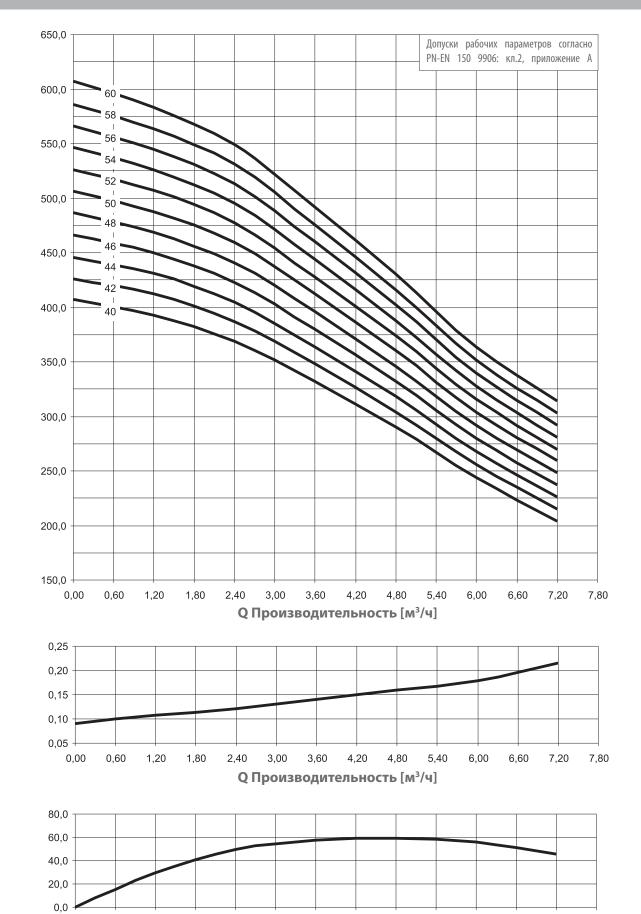
Обозна- чение	Мощ- ность	Масса насоса		SMV-4						SMK-4		
насоса	насоса (кВт)	(кг)	L _a	L _p	L,	Мощность двигателя кВт	состава КГ	L _a	L _p	L,	Мощность двигателя кВт	состава КГ
GAB.4.04	0,60	4,5	752* 722	360	392* 362	0,75	15,0* 13.7	782* 706	360	422* 346	0,75	14,3* 14,1
GAB.4.06	0,90	5,1	842* 802	410	432* 392	1,10	17,1* 15,6	862* 781	410	452* 376	1,10	16,1* 15,9 16,7*
GAB.4.08	1,00	5,7	892* 852	460	432* 392	1,10	17,1* 16.2	912* 836	460	452* 376	1,10	16.5
GAB.4.11	1,30	6,3	1027* 967	535	492* 432	1,50	20,9* 18,3	1027* 941	535	492* 406	1,50	18,6* 18,3
GAB.4.14	1,70	7,0	1182* 1102	610	572* 492	2,20	25,1* 21.8	1172* 1078	610	562* 468	2,20	22,0* 22.8
GAB.4.16	1,90	7,5	1232* 1152	660	572* 492	2,20	25,6* 22,3	1222* 1128	660	562* 468	2,20	22,5* 23,3
GAB.4.18	2,20	8,1	1243	710	533	3,00	24,4	1226	710	516	3,00	26,5
GAB.4.20	2,40	9,2	1333	800	533	3,00	25,5	1316	800	516	3,00	27,6
GAB.4.22	2,70	9,8	1383	850	533	3,00	26,1	1366	850	516	3,00	28,2
GAB.4.24	2,90	10,4	1513	900	613	4,00	30,5	1477	900	577	4,00	30,8


^{*}касается двигателя 1~

		Прои	зводител	ьность Q[M³/4]	
	0	2,4	3,6	4,8	5,7	6,6
Обозначение насоса		Произ	водитель	ность Q [л	/мин]	
насоса	0	40	60	80	95	110
			H [м]		
GAB.4.04	23	22	21	19	17	14
GAB.4.06	35	33	31	28	25	21
GAB.4.08	47	45	42	38	34	29
GAB.4.11	70	62	58	52	46	40
GAB.4.14	82	79	73	66	58	51
GAB.4.16	94	90	84	75	67	57
GAB.4.18	105	101	95	84	75	64
GAB.4.20	117	112	105	94	84	71
GAB.4.22	129	123	115	103	92	78
GAB.4.24	141	135	126	113	100	86


GAB.5




Обозна- чение	Мощ- ность	Масса насоса			SMV-4			SMK-4						
насоса	насоса (кВт)	(кг)	L _a	L,	L,	Мощность двигателя кВт	Масса состава кг	L _a	L,	L,	Мощность двигателя кВт	Масса состава кг		
GAB.5.04	0,90	5,2	911* 871	479	432* 392	1,10	17,2* 15.7	931* 855	479	452* 376	1,10	16,2* 16.0		
GAB.5.06	1,30	5,9	1079* 1019	587	492* 432	1,50	20,5* 17.9	1079* 993	587	492* 406	1,50	18,2* 17.9		
GAB.5.08	1,70	6,7	1187* 1127	695	572* 492	2,20	24,8* 21.5	1257* 1163	695	562* 468	2,20	21,7*		
GAB.5.10	2,20	7,5	1375* 1295	803	572* 492	2,20	25.6* 22,3	1365* 1271	803	562* 468	2,20	22,5*		
GAB.5.13	2,80	10,6	1552	1019	553	3,00	26,9	1535	1019	516	3,00	29,0		
GAB.5.15	3,20	11,4	1740	1127	613	4,00	31,5	1704	1127	577	4,00	31,8		
GAB.5.17	3,70	12,2	1848	1235	613	4,00	32,3	1812	1235	577	4,00	32,6		
GAB.5.19	4,20	13,0	2066	1343	723	5,50	38,7	2010	1343	667	5,50	38,2		
GAB.5.21	4,60	14,7	2228	1505	723	5,50	40,4	2172	1505	667	5,50	39,9		
GAB.5.23	5,10	15,3	2336	1613	723	5,50	41,0	2280	1613	667	5,50	40,5		
GAB.5.25	5,50	16,3	2444	1721	723	5,50	42,0	2388	1721	667	5,50	41,5		
GAB.5.28	6,20	17,5	2746	1883	863	7,50	50,1							
GAB.5.31	6,90	18,8	2908	2045	863	7,50	51,4							
GAB.5.33	7,30	19,5	3016	2153	863	7,50	52,1							

^{*}касается двигателя 1~

		Прои	зводител	ьность Q [м³/ч]	
0.5	0	3,6	6,0	9,0	12,0	15,0
Обозначение насоса		Произ	водитель	ность Q [л	/мин]	
пасоса	0	60	100	150	200	250
			H	[M]		
GAB.5.04	24	23	22	18	12	4
GAB.5.06	38	36	33	28	20	7
GAB.5.08	51	48	44	38	26	10
GAB.5.10	67	64	60	49	33	19
GAB.5.13	86	83	78	64	44	18
GAB.5.15	99	97	90	73	50	21
GAB.5.17	114	111	103	83	56	24
GAB.5.19	124	122	115	93	63	27
GAB.5.21	137	134	128	107	74	31
GAB.5.23	151	148	141	119	83	39
GAB.5.25	171	166	157	134	99	48
GAB.5.28	188	182	173	145	103	49
GAB.5.31	204	197	186	157	112	49
GAB.5.33	217	210	198	167	119	50

3,60

4,20

Q Производительность [м³/ч]

4,80

5,40

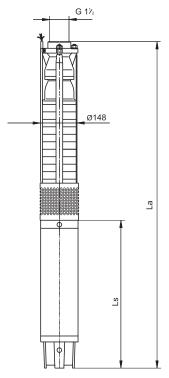
6,00

6,60

7,20

7,80

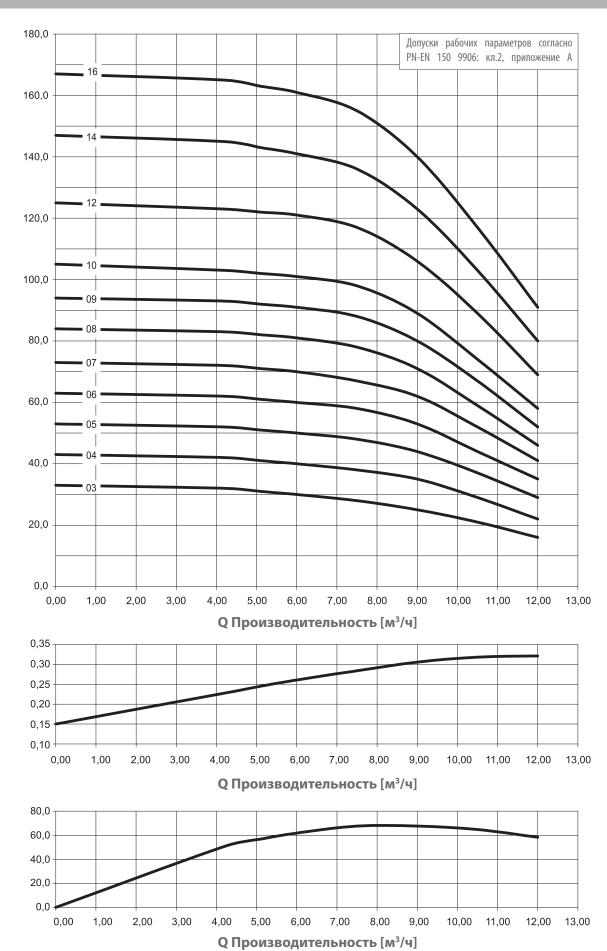
0,00

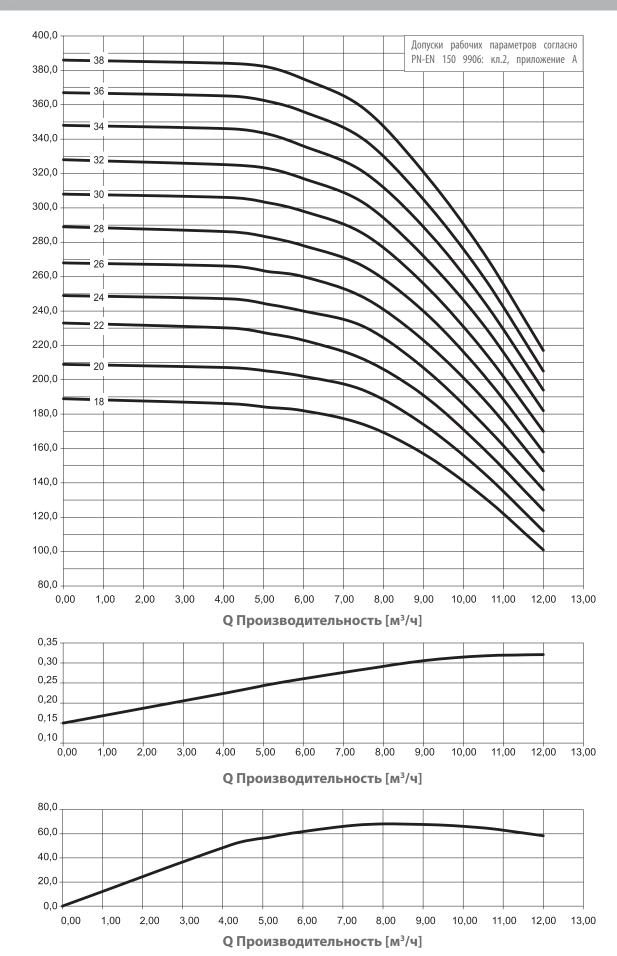

0,60

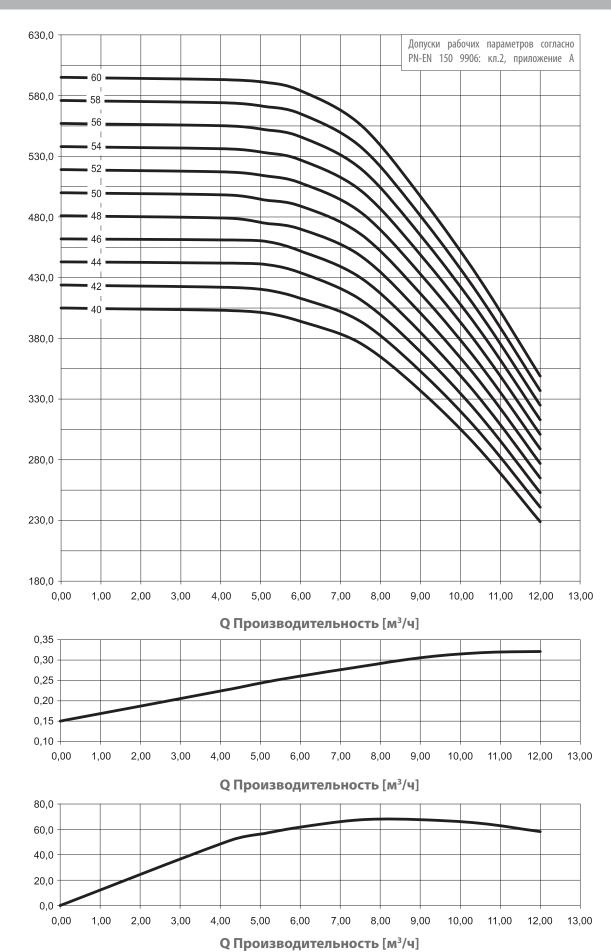
1,20

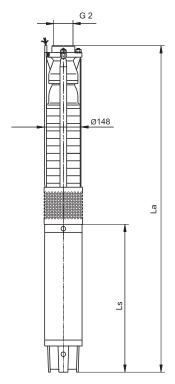
1,80

2,40

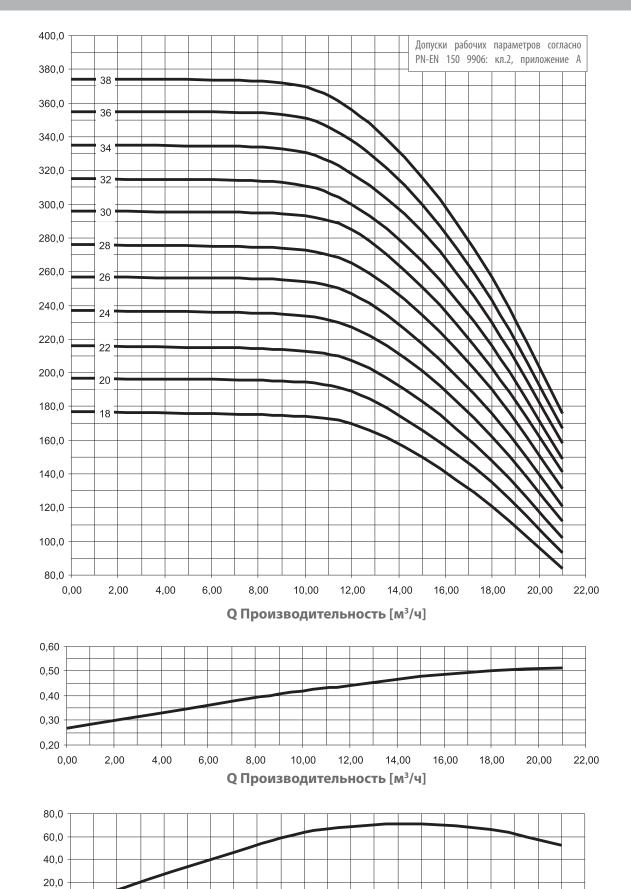

GB.0 GBC.0


	Производительность Q [м³/ч] 0 1,2 2,4 3,6 4,8 6 7,2												
Обозна-	0	1,2	2,4	3,6	4,8	6	7,2						
чение		Произ	водит	ельно	ть Q [л	ı/мин]							
насоса	0	20	40	60	80	100	120						
	F			H [M]									
GB.0.03	31	29	27	24	21	18	13						
GB.0.04	41	39	37	34	29	24	19						
GB.0.05	51	49	46	42	36	30	23						
GB.0.06	60	58	55	50	43	37	30						
GB.0.07	70	67	63	58	50	41	32						
GB.0.08	81	78	72	65	57	47	37						
GB.0.09	92	88	82	73	64	53	42						
GB.0.10	102	99	92	83	70	58	45						
GB.0.12	122	118	109	98	84	69	55						
GB.0.14	143	138	129	116	100	84	65						
GB.0.16	163	158	147	135	117	98	75						
GB.0.18	184	181	168	153	133	111	84						
GB.0.20	204	199	187	169	147	123	95						
GB.0.22	224	218	206	186	162	136	107						
GB.0.24	245	239	224	203	177	148	117						
GB.0.26	265	259	243	219	192	160	128						
GB.0.28	286	279	261	236	206	172	139						
GB.0.30	306	298	279	252	220	184	149						
GB.0.32	327	317	297	268	234	196	160						
GB.0.34	346	336	315	284	248	208	171						
GB.0.36	367	355	333	300	262	220	182						
GB.0.38	386	374	351	316	276	232	193						
GB.0.40	407	393	369	332	290	244	204						
GB.0.42	426	412	387	348	304	256	215						
GB.0.44	446	431	405	364	318	268	226						
GB.0.46	466	450	423	380	332	280	237						
GB.0.48	487	469	441	396	346	292	248						
GB.0.50	506	488	549	412	360	304	259						
GB.0.52	526	507	477	428	374	316	270						
GB.0.54	547	526	495	444	388	238	281						
GB.0.56	566	545	513	460	402	340	292						
GB.0.58	586	564	531	476	416	352	303						
GB.0.60	607	583	549	492	430	364	314						


Обозна- чение	Мощ- ность	Масса насоса			SMV-6					SMH-6		
насоса	насоса (кВт)	(кг)	L,	l _s	L	Мощность двигателя кВт	Масса состава кг	L _p	l,	L	Мощность двигателя кВт	
GB.0.03	0,5	18,5	501	485	986	1,5	51,0	501	635	1136	3,7	57,5
GB.0.04	0,7	19,0	529	485	1014	1,5	51,5	529	635	1164	3,7	58,0
GB.0.05	0,9	19,5	557	485	1042	1,5	52,0	557	635	1192	3,7	58,5
GB.0.06	1,1	20,0	585	485	1070	1,5	52,5	585	635	1220	3,7	59,0
GB.0.07	1,3	20,5	613	485	1098	2,2	53,0	613	635	1248	3,7	59,5
GB.0.08	1,4	21,0	641	485	1126	2,2	53,5	641	635	1276	3,7	60,0
GB.0.09	1,6	21,5	669	485	1154	2,2	54,0	669	635	1304	3,7	60,5
GB.0.10	1,8	22,0	697	502	1199	3,0	58,0	697	635	1332	3,7	61,0
GB.0.12	2,2	23,0	753	502	1255	3,0	59,0	753	635	1388	3,7	62,0
GB.0.14	2,5	24,0	809	502	1311	3,0	60,0	809	635	1444	3,7	63,0
GB.0.16	2,9	25,0	865	521	1386	3,7	65,0	865	635	1500	3,7	64,0
GB.0.18	3,2	26,0	921	521	1442	3,7	66,0	921	635	1556	3,7	65,0
GB.0.20	3,6	31,0	1077	521	1598	4,0	71,0	1077	678	1755	5,5	74,0
GB.0.22	4,0	32,0	1133	552	1685	5,5	76,0	1133	678	1811	5,5	75,0
GB.0.24	4,3	33,0	1189	552	1741	5,5	77,0	1189	678	1867	5,5	76,0
GB.0.26	4,7	34,0	1245	552	1797	5,5	78,0	1245	678	1923	5,5	77,0
GB.0.28	5,0	35,5	1301	552	1853	5,5	79,5	1301	678	1979	5,5	78,5
GB.0.30	5,4	37,0	1657	595	1952	7,5	86,0	1657	710	2067	7,5	83,0
GB.0.32	5,8	38,0	1413	595	2008	7,5	87,0	1413	710	2123	7,5	84,0
GB.0.34	6,1	39,0	1469	595	2064	7,5	88,0	1469	710	2179	7,5	85,0
GB.0.36	6,5	40,0	1525	595	2120	7,5	89,0	1525	710	2235	7,5	86,0
GB.0.38	6,8	41,0	1581	595	2176	7,5	90,0	1581	710	2291	7,5	87,0
GB.0.40	7,2	46,0	1737	595	2332	7,5	65,0	1737	710	2447	7,5	91,0
GB.0.42	7,6	47,0	1793	635	2428	9,2	101,0	1793	750	2543	9,2	97,0
GB.0.44	7,9	48,0	1849	635	2484	9,2	102,0	1849	750	2599	9,2	98,0
GB.0.46	8,3	49,5	1905	635	2540	9,2	103,5	1905	750	2655	9,2	99,5
GB.0.48	8,6	50,5	1961	635	2596	9,2	104,5	1961	750	2711	9,2	100,5
GB.0.50	9,0	52,0	2017	685	2702	11,0	112,0	2017	835	2852	11,0	110,0
GB.0.52	9,4	53,0	2073	685	2758	11,0	113,0	2073	835	2908	11,0	111,0
GB.0.54	9,7	54,0	2129	685	2814	11,0	114,0	2129	835	2964	11,0	112,0
GB.0.56	10,1	55,0	2185	685	2870	11,0	115,0	2185	835	3020	11,0	113,0
GB.0.58	10,4	56,0	2241	685	2926	11,0	116,0	2241	835	3076	11,0	114,0
GB.0.60	10,8	57,0	2297	725	3022	13,0	119,0	2297	870	3176	13,0	118,0



GBA.1 GBC.1



	Производительность Q [м²/ч] 0 4,2 5,1 6 7,5 9 10,5 12													
Обозна-	0	4,2	5,1	6	7,5	9	10,5	12						
чение		Про	извод	итель	ность	Q [л/n	ин]							
насоса	0	70	85	100	125	150	175	200						
				н	м]									
GB.1.03	33	32	31	30	29.5	28	21	16						
GB.1.04	43	42	41	40	37	35	29	22						
GB.1.05	53	52	51	50	49	45	37	29						
GB.1.06	63	62	61	60	58	54	44	35						
GB.1.07	73	72	71	70	69	62	52	41						
GB.1.08	84	83	82	80	79	71	59	46						
GB.1.09	94	93	92	90	89	80	67	52						
GB.1.10	105	103	102	100	98	89	74	58						
GB.1.12	125	123	122	120	117	106	89	59						
GB.1.14	147	145	143	141	136	123	103	80						
GB.1.16	167	165	163	161	155	140	117	91						
GB.1.18	189	186	184	182	174	157	132	101						
GB.1.20	209	207	204	202	194	174	146	112						
GB.1.22	233	227	224	221	212	191	160	124						
GB.1.24	249	247	244	240	231	207	174	136						
GB.1.26	268	266	263	260	248	223	189	147						
GB.1.28	289	286	284	278	266	240	203	158						
GB.1.30	308	306	303	298	285	256	217	170						
GB.1.32	328	325	323	317	303	272	232	182						
GB.1.34	348	346	343	336	321	289	246	194						
GB.1.36	367	365	362	356	340	305	260	205						
GB.1.38	386	384	382	375	358	321	274	217						
GB.1.40	405	403	401	394	376	337	288	229						
GB.1.42	424	422	420	413	394	353	302	241						
GB.1.44	443	442	441	432	412	369	316	253						
GB.1.46	462	461	460	451	430	385	330	265						
GB.1.48	481	479	471	470	448	401	344	277						
GB.1.50	500	498	492	489	466	417	358	289						
GB.1.52	519	517	512	508	484	433	372	301						
GB.1.54	538	536	531	527	502	449	386	313						
GB.1.56	557	555	552	546	520	465	400	325						
GB.1.58	576	574	571	565	538	481	414	337						
GB.1.60	595	593	591	584	556	497	428	349						

Обозна- чение	Мощ- ность	Масса насоса			SMV-6					SMH-6		
насоса	насоса (кВт)	(кг)	L _p	L,	L _a	Мощность двигателя кВт	Масса состава кг	L,	L _s	La	Мощность двигателя кВт	Масса состава кг
GB.1.03	1,1	17,5	513	485	998	1,5	50,0	513	635	1148	3,7	56,5
GB.1.04	1,4	18,5	545	485	1030	2,2	51,0	545	635	1180	3,7	57,5
GB.1.05	1,8	19,5	577	485	1062	2,2	52,0	577	635	1212	3,7	58,5
GB.1.06	2,2	20,0	609	485	1094	2,2	52,5	609	635	1244	3,7	59,0
GB.1.07	2,5	25,0	641	502	1143	3,0	61,0	641	635	1276	3,7	64,0
GB.1.08	2,9	25,5	673	502	1175	3,0	61,5	673	635	1308	3,7	65,5
GB.1.09	3,2	26,0	705	521	1226	3,7	66,0	705	635	1340	3,7	66,0
GB.1.10	3,6	26,5	737	521	1258	4,0	66,5	737	678	1415	5,5	69,5
GB.1.12	4,3	27,5	801	552	1353	5,5	71,5	801	678	1479	5,5	70,5
GB.1.14	5,0	28,5	865	552	1417	5,5	72,5	865	678	1543	5,5	71,5
GB.1.16	5,8	30,0	929	595	1524	7,5	79,0	929	710	1639	7,5	76,0
GB.1.18	6,5	31,0	993	595	1588	7,5	80,0	993	710	1703	7,5	77,0
GB.1.20	7,2	37,0	1161	635	1796	9,2	91,0	1161	750	1911	9,2	87,0
GB.1.22	7,9	39,0	1225	635	1860	9,2	93,0	1225	750	1975	9,2	89,0
GB.1.24	8,6	41,0	1289	635	1924	9,2	95,0	1289	750	2039	9,2	91,0
GB.1.26	9,4	42,5	1353	685	2038	11,0	102,0	1353	835	2188	11,0	100,5
GB.1.28	10,1	44,5	1417	685	2102	11,0	104,5	1417	835	2252	11,0	102,5
GB.1.30	10,8	46,5	1481	725	2206	13,0	108,5	1481	870	2351	13,0	107,5
GB.1.32	11,5	48,0	1545	725	2270	13,0	110,5	1545	870	2415	13,0	109,0
GB.1.34	12,5	50,0	1609	775	2384	15,0	115,0	1609	920	2529	15,0	115,0
GB.1.36	13,0	51,5	1673	775	2448	15,0	116,5	1673	920	2593	15,0	116,0
GB.1.38	13,3	53,5	1737	775	2512	15,0	118,5	1737	920	2657	15,0	118,5
GB.1.40	13,7	59,0	1905	875	2780	18,5	140,0	1905	985	2890	18,5	130,5
GB.1.42	14,0	60,0	1969	875	2844	18,5	141,0	1969	985	2954	18,5	131,0
GB.1.44	14,4	62,5	2033	875	2908	18,5	143,5	2033	985	3018	18,5	133,5
GB.1.46	14,8	64,0	2097	875	2972	18,5	145,0	2097	985	3082	18,5	135,0
GB.1.48	15,1	66,0	2161	875	3036	18,5	147,0	2161	985	3146	18,5	137,0
GB.1.50	15,5	68,0	2225	875	3100	18,5	149,0	2225	1060	3285	22,0	146,0
GB.1.52	15,8	70,0	2289	965	3254	22,0	161,0	2289	1060	3349	22,0	148,0
GB.1.54	16,2	71,5	2353	965	3318	22,0	162,5	2353	1060	3413	22,0	149,5
GB.1.56	16,6	73,5	2417	965	3382	22,0	164,5	2417	1060	3477	22,0	151,5
GB.1.58	16,9	75,0	2481	965	3446	22,0	166,0	2481	1060	3541	22,0	153,0
GB.1.60	17,3	77,0	2545	1055	3600	26,0	180,0	2545	1120	3665	26,0	161,0

180,0 Допуски рабочих параметров согласно PN-EN 150 9906: кл.2, приложение A 160,0 16 140,0 14 120,0 12 100,0 10 09 80,0 80 07 60,0 06 05 40,0 04 03 20,0 0,0 0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 16,0 18,0 20,0 22,0 Q Производительность [м³/ч] 0,60 0,50 0,40 0,30 0,20 0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 16,0 18,0 20,0 22,0 Q Производительность [м³/ч] 80,0 60,0 40,0 20,0 0,0 2,00 4,00 6,00 12,00 16,00 0,00 10,00 14,00 18,00 20,00 22,00 Q Производительность [м³/ч]

10,00

Q Производительность [м³/ч]

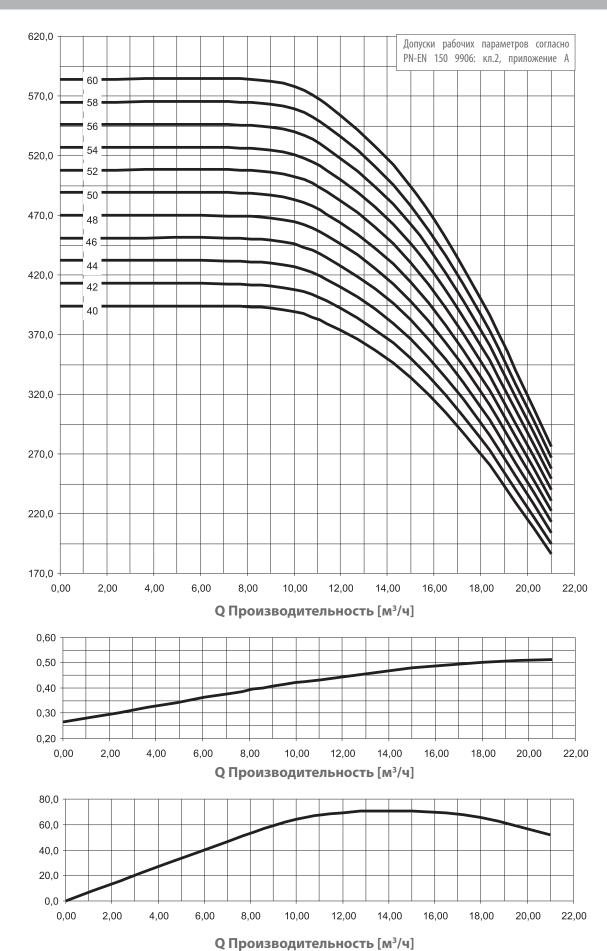
12,00

14,00

16,00

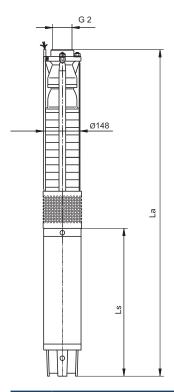
18,00

20,00

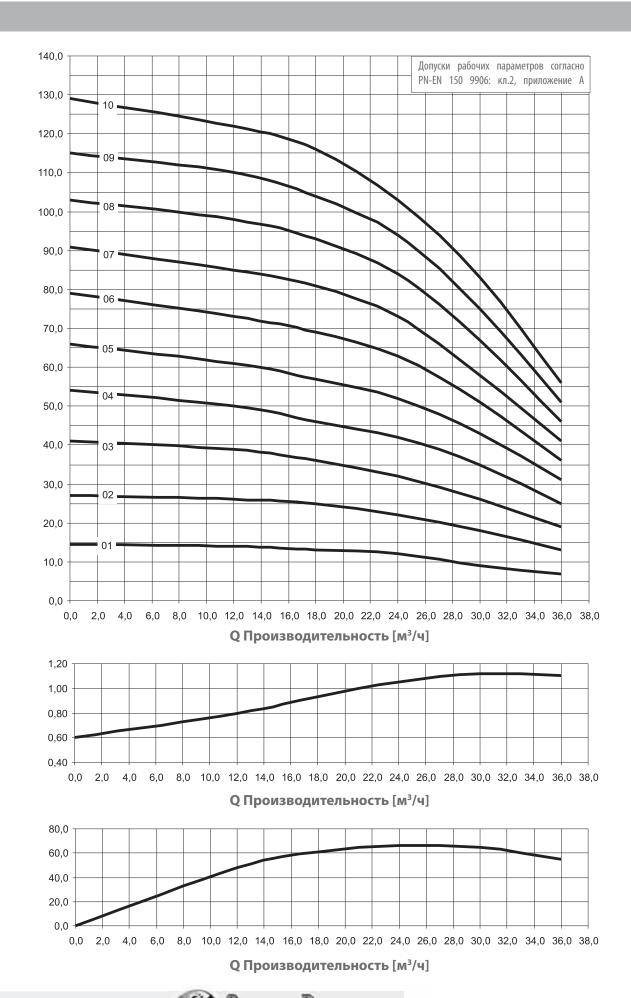

22,00

0,00

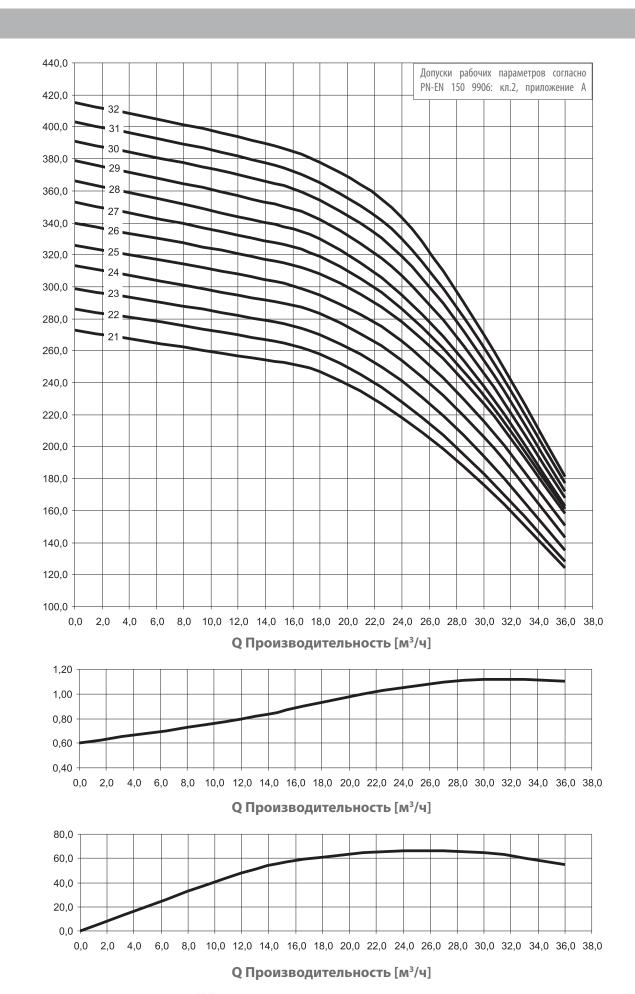
2,00

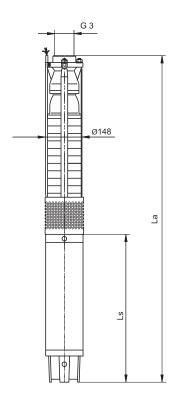

4,00

6,00

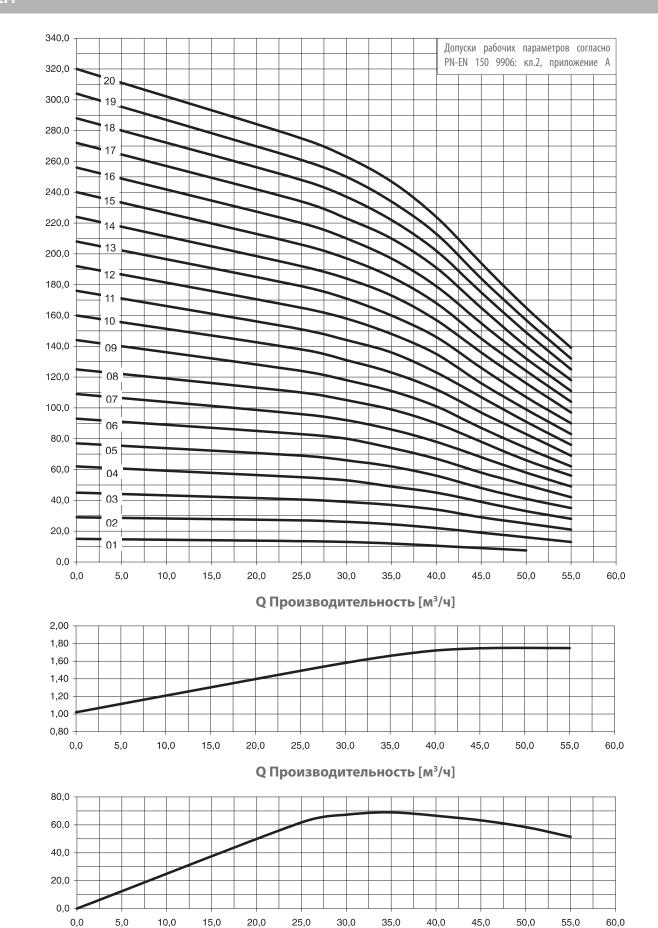

GBA.2 GBC.2

		Произв	одител	ьность	Q [m³/4]	
Обозна-	0	9	12	15	18	21
чение		Троизво	дитель	ность ([л/мин]
насоса	0	150	200	250	300	350
			н	M]		
GB.2.03	30	29	28	25	19	13
GB.2.04	40	39	38	33	27	18
GB.2.05	49	48	47	41	33	22
GB.2.06	59	58	56	49	40	28
GB.2.07	68	67	65	57	46	32
GB.2.08	78	77	75	66	53	37
GB.2.09	89	88	85	74	60	42
GB.2.10	98	97	94	83	66	46
GB.2.12	118	116	113	100	81	55
GB.2.14	139	137	132	116	94	65
GB.2.16	157	155	150	133	107	73
GB.2.18	177	175	170	150	121	84
GB.2.20	197	195	189	166	135	93
GB.2.22	216	214	207	183	148	102
GB.2.24	237	235	227	201	162	112
GB.2.26	257	255	247	217	176	121
GB.2.28	274	270	265	234	190	131
GB.2.30	296	294	285	251	203	141
GB.2.32	315	313	300	266	216	149
GB.2.34	335	333	318	284	230	158
GB.2.36	355	353	338	300	243	167
GB.2.38	374	372	356	316	257	176
GB.2.40	394	392	374	334	270	186
GB.2.42	413	411	392	350	283	195
GB.2.44	432	430	410	366	296	204
GB.2.46	451	449	428	382	309	213
GB.2.48	470	468	446	398	322	222
GB.2.50	489	487	464	414	335	231
GB.2.52	508	506	482	430	348	240
GB.2.54	527	525	500	446	361	249
GB.2.56	546	544	518	462	374	258
GB.2.58	565	563	536	478	387	267
GB.2.60	584	582	554	494	400	276

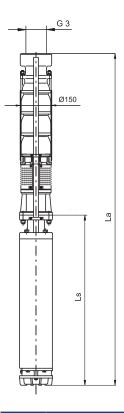

Обозна- чение	Мощ- ность	Масса насоса			SMV-6					SMH-6		
насоса	насоса (кВт)	(кг)	L _p	L _s	L _a	Мощность двигателя кВт	Масса состава кг	L _p	L _s	L _a	Мощность двигателя кВт	
GB.2.03	1,5	18,0	540	485	1025	2,2	50,5	540	635	1175	3,7	56,5
GB.2.04	2,0	19,0	581	485	1066	2,2	51,5	581	635	1216	3,7	57,5
GB.2.05	2,5	19,5	622	502	1124	3,0	55,5	622	635	1257	3,7	58,5
GB.2.06	3,0	20,5	663	521	1184	3,7	60,5	663	635	1268	3,7	59,0
GB.2.07	3,5	21,5	704	521	1225	4,0	61,5	704	678	1382	5,5	64,0
GB.2.08	4,0	22,5	745	552	1297	5,5	66,5	745	678	1423	5,5	65,5
GB.2.09	4,5	23,0	786	552	1338	5,5	67,0	786	678	1464	5,5	66,0
GB.2.10	5,0	24,0	827	552	1379	5,5	68,5	827	678	1505	5,5	69,5
GB.2.12	6,0	24,5	909	595	1504	7,5	73,5	909	710	1619	7,5	70,5
GB.2.14	7,0	26,5	991	635	1626	9,2	80,5	991	750	1741	9,2	71,5
GB.2.16	8,0	28,0	1073	635	1708	9,2	82,5	1073	750	1823	9,2	76,0
GB.2.18	9,0	30,0	1155	635	1840	11,0	90,0	1155	835	1990	11,0	77,0
GB.2.20	10,0	36,0	1350	725	2075	13,0	98,0	1350	870	2220	13,0	87,0
GB.2.22	11,0	37,5	1432	725	2157	13,0	99,5	1432	870	2302	13,0	89,0
GB.2.24	12,0	39,5	1514	775	2289	15,0	104,5	1514	920	2434	15,0	91,0
GB.2.26	13,0	41,5	1596	775	2371	15,0	106,5	1596	920	2516	15,0	100,5
GB.2.28	14,0	43,0	1678	875	2553	18,5	124,0	1678	985	2663	18,5	102,5
GB.2.30	15,0	44,5	1760	875	2635	18,5	125,5	1760	985	2745	18,5	107,5
GB.2.32	16,0	46,5	1842	875	2717	18,5	127,5	1842	985	2827	18,5	109,0
GB.2.34	17,0	48,5	1924	875	2799	18,5	129,5	1924	985	2909	18,5	115,0
GB.2.36	18,0	50,0	2006	965	2971	22,0	141,0	2006	1060	3066	22,0	116,0
GB.2.38	19,0	51,5	2088	965	3053	22,0	142,0	2088	1060	3148	22,0	118,5
GB.2.40	20,0	53,0	2170	965	3135	22,0	144,0	2170	1060	3230	22,0	130,5
GB.2.42	21,0	58,5	2365	965	3330	22,0	149,5	2365	1060	3425	22,0	131,0
GB.2.44	22,0	60,5	2447	1055	3502	26,0	163,5	2447	1120	3567	26,0	133,5
GB.2.46	23,0	61,5	2529	1055	3584	26,0	164,5	2529	1120	3649	26,0	135,0
GB.2.48	24,0	63,0	2611	1055	3666	26,0	166,0	2611	1120	3731	26,0	137,0
GB.2.50	25,0	64,5	2693	1055	3748	26,0	167,5	2693	1120	3813	26,0	146,0
GB.2.52	26,0	66,5	2775	1135	3910	30,0	175,5	2775	1230	4005	30,0	148,0
GB.2.54	27,0	68,5	2857	1135	3992	30,0	177,5	2857	1230	4087	30,0	149,5
GB.2.56	28,0	70,0	2939	1135	4074	30,0	179,0	2939	1230	4169	30,0	151,5
GB.2.58	29,0	71,5	3021	1315	4336	37,0	201,5	3021	1280	4301	34,0	153,0
GB.2.60	30,0	73,5	3103	1315	4418	37,0	203,5	3103	1280	4383	34,0	161,0


svpk@mi.ru

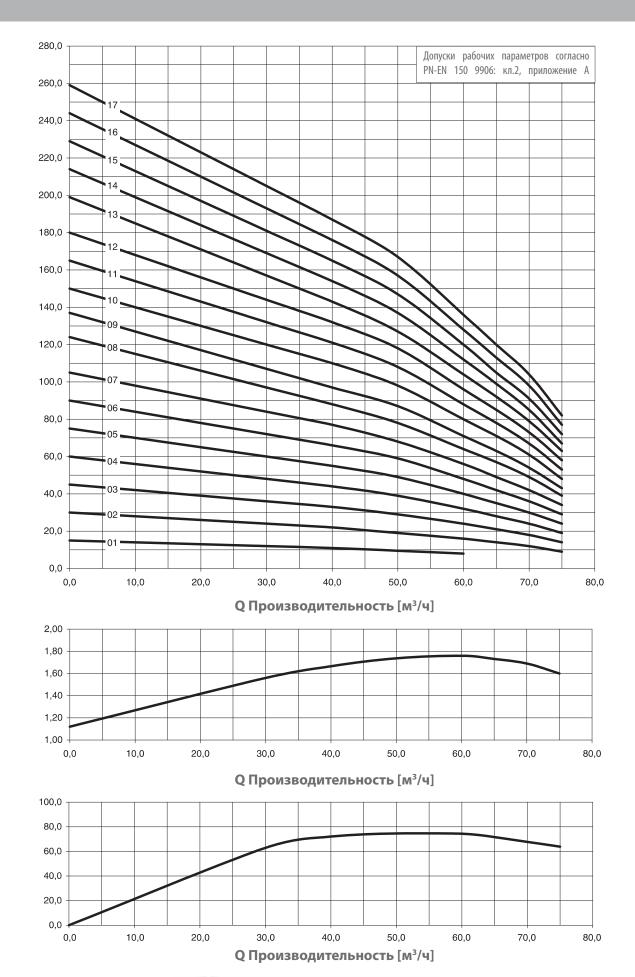
280,0 Допуски рабочих параметров согласно PN-EN 150 9906: кл.2, приложение А 260,0 20 19 240,0 18 220,0 17 16 200,0 15 180,0 14 13 160,0 12 140,0 11 120,0 100,0 80,0 60,0 40,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 16,0 18,0 20,0 22,0 24,0 26,0 28,0 30,0 32,0 34,0 36,0 38,0 Q Производительность [м³/ч] 1,20 1,00 0,80 0,60 0,40 8,0 10,0 12,0 14,0 16,0 18,0 20,0 22,0 24,0 26,0 28,0 30,0 32,0 34,0 36,0 38,0 Q Производительность [м³/ч] 80,0 60,0 40,0 20,0 0,0 0,0 2,0 6,0 8,0 10,0 12,0 14,0 16,0 18,0 20,0 22,0 24,0 26,0 28,0 30,0 32,0 34,0 36,0 38,0 Q Производительность [м³/ч]



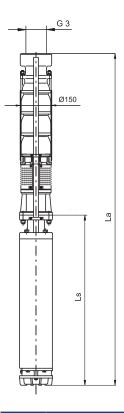
GBC.3


		Произр	одител	LUCCEL	Λ [143/11	1
	0	произв 12	одител 18	ъность 24	Ų [M³/4 30	36
Обозна-						
чение		. 	дитель			
насоса	0	200	300	400	500	600
			H [[м]		
GBC.3.01	14,5	14	13	12	9	7
GBC.3.02	27	26	25	22	18	13
GBC.3.03	41	39	36	32	26	19
GBC.3.04	54	50	46	42	35	25
GBC.3.05	66	61	57	52	43	31
GBC.3.06	79	73	69	63	51	36
GBC.3.07	91	85	81	73	58	41
GBC.3.08	103	98	93	84	67	46
GBC.3.09	115	110	104	94	75	51
GBC.3.10	129	122	116	103	83	56
GBC.3.11	142	134	127	112	90	61
GBC.3.12	155	146	139	123	98	66
GBC.3.13	168	157	150	133	106	71
GBC.3.14	181	169	162	144	115	76
GBC.3.15	193	180	173	154	124	81
GBC.3.16	207	194	186	166	135	88
GBC.3.17	220	208	199	179	146	98
GBC.3.18	234	222	212	191	158	110
GBC.3.19	247	233	224	200	164	114
GBC.3.20	259	244	235	208	169	120
GBC.3.21	273	257	247	218	176	124
GBC.3.22	286	270	258	228	183	128
GBC.3.23	299	282	270	241	194	135
GBC.3.24	313	295	283	254	206	143
GBC.3.25	326	308	295	266	216	151
GBC.3.26	340	321	308	278	227	158
GBC.3.27	353	332	319	286	232	161
GBC.3.28	366	344	330	295	238	163
GBC.3.29	379	357	342	307	246	168
GBC.3.30	391	370	354	319	254	172
GBC.3.31	403	382	365	330	262	177
GBC.3.32	415	394	378	343	270	181

		Обозна-	Мощ- ность	Macca			SMV-6					SMH-6		
		чение насоса	насоса (кВт)	насоса (кг)	L,	L,	L _a	Мощность двигателя кВт		L,	L,	L _a	Мощность двигателя кВт	Масса состава кг
	d=1	GBC.3.01	1,2	20,5	528	485	1013	2,2	53,0	528	635	1163	3,7	59,5
	u-i	GBC.3.02	2,3	21,5	586	502	1088	3,0	57,5	586	635	1221	3,7	60,5
		GBC.3.03	3,4	23,0	644	521	1165	4,0	59,0	644	678	1322	5,5	66,0
		GBC.3.04	4,5	24,0	702	552	1254	5,5	68,0	702	678	1380	5,5	67,0
		GBC.3.05	5,6	25,5	760	595	1355	7,5	74,5	760	710	1470	7,5	71,5
		GBC.3.06	6,7	26,5	818	595	1413	7,5	75,5	818	710	1528	7,5	72,5
		GBC.3.07	7,8	28,0	876	635	1511	9,2	82,0	876	750	1626	9,2	78,0
		GBC.3.08 GBC.3.09	9,0 10,1	29,0 30,5	934 992	685 685	1619 1677	11,0 11.0	89,0 90,5	934 992	835 835	1769 1827	11,0 11,0	87,0 88,5
		GBC.3.10	11,2	31,5	1050	725	1775	13,0	93,5	1050	870	1920	13,0	92,5
		GBC.3.11	12,1	33,0	1108	725	1833	13,0	95,0	1108	870	1978	13,0	94,0
		GBC.3.12	13,4	34,0	1166	775	1941	15,0	99,0	1166	920	2086	15,0	99,0
		GBC.3.13	14,6	35,5	1224	775	1999	15,0	100,5	1224	920	2144	15,0	100,5
		GBC.3.14	15,7	36,5	1282	875	2157	18,5	117,5	1282	985	2267	18,5	107,5
		GBC.3.15 GBC.3.16	16,8 17,9	38,0 39,5	1340 1398	875 875	2215 2273	18,5 18,5	119,0 120,5	1340 1398	985 985	2325 2383	18,5 18,5	109,0 110,5
		GBC.3.17	19,0	41,0	1456	965	2421	22,0	132,0	1456	1060	2516	22,0	119,0
		GBC.3.18	20,2	45,5	1622	965	2587	22,0	136,5	1622	1060	2682	22,0	123,5
		GBC.3.19	20,9	46,5	1680	965	2645	22,0	137,5	1680	1060	2740	22,0	124,5
		GBC.3.20	21,6	48,0	1738	1055	2793	26,0	151,0	1738	1120	2858	26,0	132,0
		GBC.3.21	22,7	49,0	1796	1055	2851	26,0	152,0	1796	1120	2915	26,0	133,0
		GBC.3.22 GBC.3.23	24,6 25,7	50,5 51,5	1854 1912	1055 1135	2909 3047	26,0 30,0	153,5 160,5	1854 1912	1120 1230	2974 3142	26,0 30,0	134,5 145,5
		GBC.3.24	26,8	53,0	1970	1135	3105	30,0	162,0	1970	1230	3200	30,0	147,0
		GBC.3.25	27,9	54,0	2028	1135	3163	30,0	163,0	2028	1230	3258	30,0	148,0
		GBC.3.26	29,0	55,5	2086	1135	3221	30,0	164,5	2086	1230	3316	30,0	149,5
		GBC.3.27	30,1	56,5	2144	1315	3459	37,0	186,5	2144	1280	3424	34,0	154,5
		GBC.3.28	33,6	58,0	2202	1315	3517	37,0	188,0	2202	1280	3482	34,0	156,0
		GBC.3.29 GBC.3.30	32,4 33,6	59,0 60,5	2260 2318	1315 1315	3575 3633	37,0 37,0	189,0 190,5	2260 2318	1280 1360	3540 3678	34,0 37,0	157,0 165,5
		GBC.3.31	34,8	61,5	2376	1315	3691	37,0	191,5	2376	1360	3736	37,0	166,5
,		GBC.3.32	36,0	63,0	2434	1315	3749	37,0	193,0	2434	1360	3794	37,0	168,0
3	d=2	GBC.3.01	1,2	20,0	525	485	1010	2,2	52,5	525	635	1160	3,7	59,0
	u-Z	GBC.3.02	2,3	21,5	578	502	1080	3,0	57,5	578	635	1213	3,7	60,5
		GBC.3.03	3,4	23,0	630	521	1151	4,0	59,0	630	678	1308	5,5	66,0
		GBC.3.04	4,5	24,5	683	552	1235	5,5	68,5	683	678	1361	5,5	67,5
)		GBC.3.05	5,6	26,0	735	595	1330	7,5	75,0	735	710	1445	7,5	72,0
;		GBC.3.06	6,7	27,5	788	595	1383	7,5	76,5	788	710	1495	7,5	73,5
		GBC.3.07 GBC.3.08	7,8 9,0	29,0 30,5	840 893	635 685	1475 1578	9,2	83,0 90,5	840 893	750 835	1590 1728	9,2 11,0	79,0 88,5
j		GBC.3.09	10,1	32,0	945	685	1630	11,0	92,0	945	835	1780	11,0	90,0
		GBC.3.10	11,2	33,5	998	725	1723	13,0	95,5	998	870	1868	13,0	94,5
)		GBC.3.11	12,1	35,0	1050	725	1775	13,0	97,0	1050	870	1920	13,0	96,0
		GBC.3.12	13,4	36,5	1103	775	1878	15,0	101,5	1103	920	2023	15,0	101,5
4		GBC.3.13 GBC.3.14	14,6 15,7	38,0 39,5	1155 1208	775 875	1930 2083	15,0 18,5	103,0 120,5	1155 1208	920 985	2075 2193	15,0 18,5	102,0
		GBC.3.14	16,8	41,0	1208	875	2135	18,5	120,5	1208	985	2245	18,5	110,5 111,0
		GBC.3.16	17,9	42,5	1313	875	2188	18,5	123,5	1313	985	2298	18,5	113,5
		GBC.3.17	19,0	44,0	1365	965	2330	22,0	135,0	1365	1060	2425	22,0	122,0
		GBC.3.18	20,2	49,0	1524	965	2489	22,0	140,0	1524	1060	2584	22,0	127,0
		GBC.3.19	20,9	50,5	1577	965	2542	22,0	141,5	1577	1060	2637	22,0	128,5
		GBC.3.20 GBC.3.21	21,6 22,7	52,0 53,5	1629 1682	1055 1055	2684 2737	26,0 26,0	155,0 156,5	1629 1682	1120 1120	2749 2802	26,0 26,0	135,0 137,5
		GBC.3.22	24,6	55,0	1734	1055	2789	26,0	158,0	1734	1120	2854	26,0	139,0
3		GBC.3.23	25,7	56,5	1787	1135	2922	30,0	165,5	1787	1230	3017	30,0	150,5
		GBC.3.24	26,8	58,0	1839	1135	2974	30,0	167,0	1839	1230	3069	30,0	152,0
		GBC.3.25	27,9	59,5	1892	1135	3027	30,0	168,5	1892	1230	3122	30,0	153,5
		GBC.3.26	29,0	61,0	1944	1135	3079	30,0	170,0	1944	1230	3174	30,0	155,0
5		GBC.3.27 GBC.3.28	30,1 33,6	62,5 64,0	1997 2049	1315 1315	3312 3364	37,0 37,0	192,5 194,0	1997 2049	1280 1280	3277 3329	34,0 34,0	160,5 162,0
)		GBC.3.29	32,4	65,5	2102	1315	3417	37,0	195,5	2102	1280	3382	34,0	163,5
		GBC.3.30	33,6	67,0	2154	1315	3469	37,0	197,0	2154	1360	3514	37,0	172,0
\dashv		GBC.3.31	34,8	68,5	2207	1315	3522	37,0	198,5	2207	1360	3567	37,0	173,5
		GBC.3.32	36,0	70,0	2259	1315	3574	37,0	200,0	2259	1360	3619	37,0	175,0
		-												

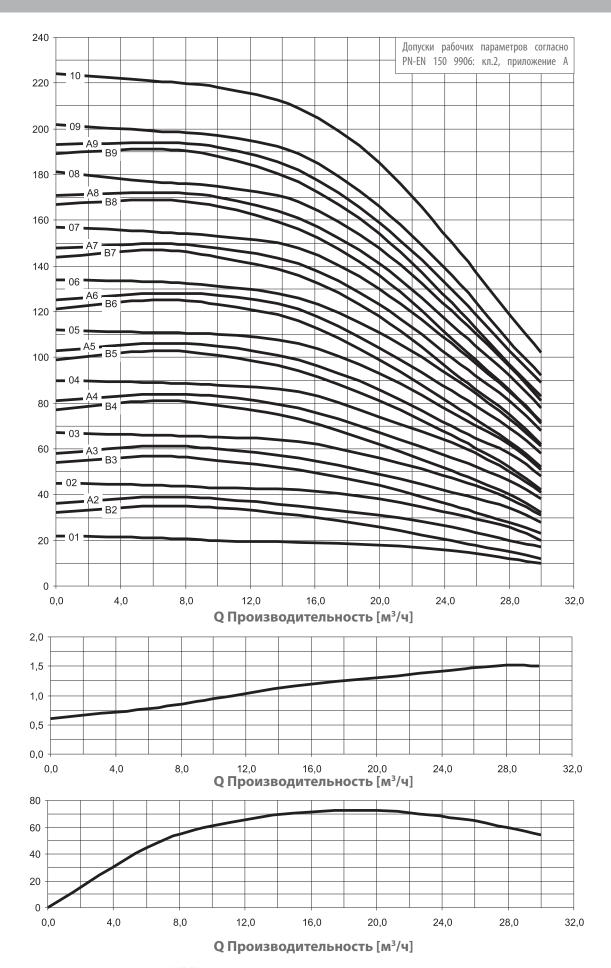


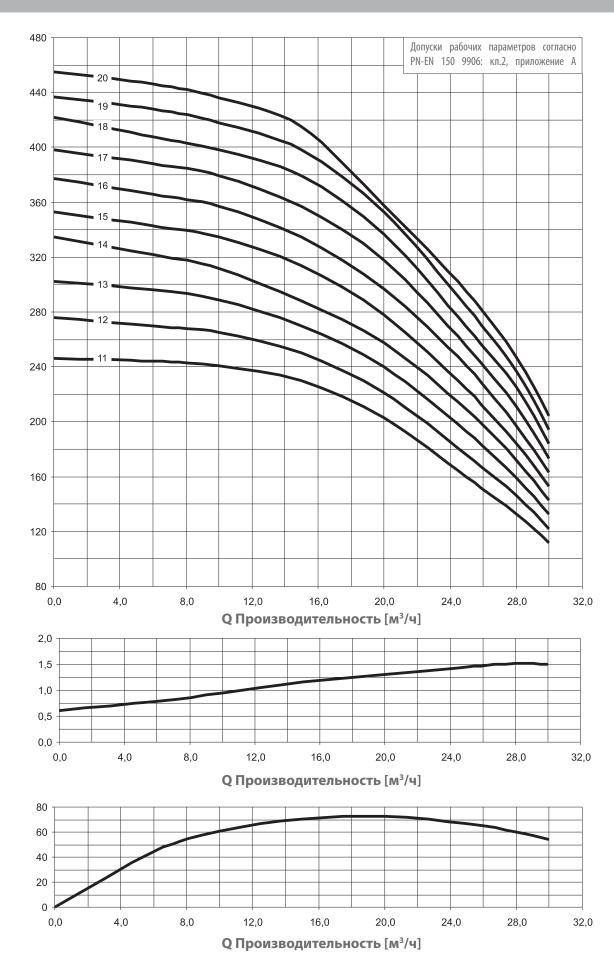
Q Производительность [м³/ч]

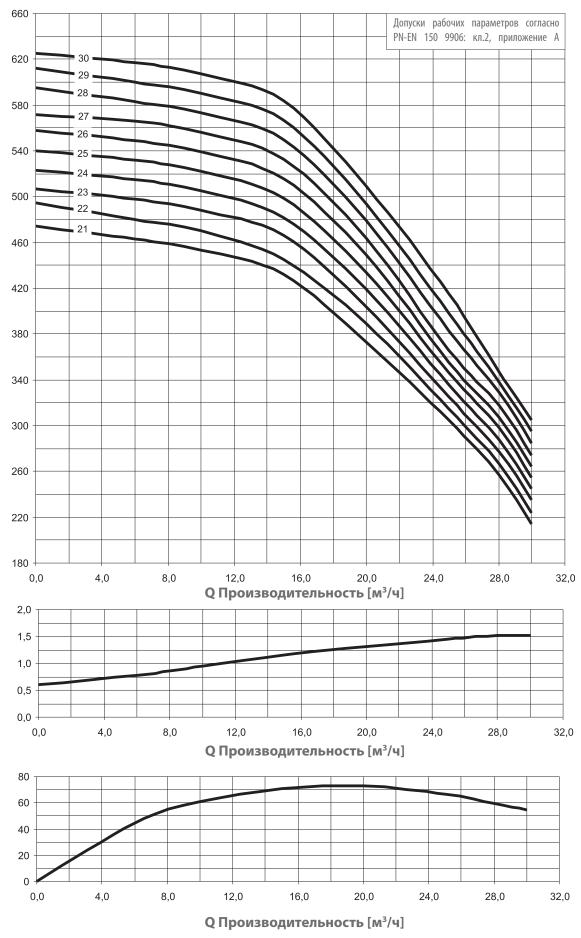


Обозна- чение	Мощ- ность	Масса насоса			SMV-6					SMH-6		
насоса	насоса (кВт)	(кг)	L _p	L _s	L _a	Мощность двигателя кВт		Ļ	L,	L _a	Мощность двигателя кВт	Масса состава кг
GBC.4.01	2,2	23,0	555	502	1057	3,0	59,0	555	635	1190	3,7	62,0
GBC.4.02	3,9	28,0	640	552	1192	5,5	72,0	640	678	1318	5,5	71,0
GBC.4.03	5,5	32,0	725	595	1320	7,5	81,0	725	710	1435	7,5	78,0
GBC.4.04	7,1	37,0	810	635	1445	9,2	91,0	810	750	1560	9,2	87,0
GBC.4.05	8,8	42,0	895	685	1580	11,0	102,0	895	835	1730	11,0	100,0
GBC.4.06	10,4	46,0	980	725	1705	13,0	108,0	980	870	1850	13,0	107,0
GBC.4.07	12,1	51,0	1065	725	1790	13,0	113,0	1065	870	1935	13,0	112,0
GBC.4.08	13,7	56,0	1150	775	1925	15,0	121,0	1150	920	2070	15,0	121,0
GBC.4.09	15,4	61,0	1235	875	2110	18,5	142,0	1235	985	2220	18,5	132,0
GBC.4.10	17,0	65,0	1320	875	2195	18,5	146,0	1320	985	2305	18,5	136,0
GBC.4.11	18,7	70,0	1405	965	2370	22,0	161,0	1405	1060	2465	22,0	148,0
GBC.4.12	20,3	75,0	1490	965	2455	22,0	166,0	1490	1060	2550	22,0	153,0
GBC.4.13	22,0	79,0	1575	1055	2630	26,0	182,0	1575	1120	2695	26,0	163,0
GBC.4.14	23,6	84,0	1660	1055	2715	26,0	187,0	1660	1120	2780	26,0	168,0
GBC.4.15	25,3	89,0	1745	1135	2880	30,0	198,0	1745	1230	2975	30,0	183,0
GBC.4.16	26,9	94,0	1830	1135	2965	30,0	203,0	1830	1230	3060	30,0	188,0
GBC.4.17	28,5	98,0	1915	1315	3230	37,0	228,0	1915	1280	3195	34,0	196,0
GBC.4.18	30,2	103,0	2000	1315	3315	37,0	233,0	2000	1280	3280	34,0	201,0
GBC.4.19	31,9	108,0	2085	1315	3400	37,0	238,0	2085	1360	3445	37,0	212,0
GBC.4.20	33,5	112,0	2170	1315	3485	37,0	243,0	2170	1360	3530	37,0	217,0

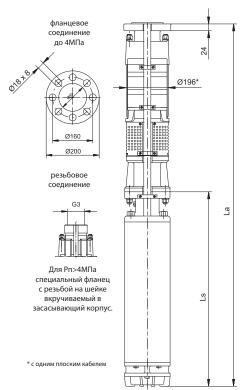
		Пр	оизво	дител	ьност	ь Q [м [:]	³ /4]	
Обозна-	0	25	30	35	40	45	50	55
чение		Про	извод	итель	ность	Q [л/n	лин]	
насоса	0	416	500	583	667	750	883	917
				н	м]			
GBC.4.01	15	13,5	13	12	10,5	9	7,5	-
GBC.4.02	29	27	26	24,5	22	19	16	13
GBC.4.03	45	40,5	39	37	34	29	25	21
GBC.4.04	62	55	53	49	45	39	33	28
GBC.4.05	77	69	66	62	56	48	41	35
GBC.4.06	93	83	80	74	67	58	50	42
GBC.4.07	109	96	92	86	78	68	58	49
GBC.4.08	125	110	105	99	90	78	66	56
GBC.4.09	144	124	118	111	101	87	74	62
GBC.4.10	160	138	131	123	112	97	83	69
GBC.4.11	176	151	144	136	123	107	91	76
GBC.4.12	192	165	158	148	135	116	99	83
GBC.4.13	208	179	171	160	146	126	107	90
GBC.4.14	224	192	184	173	157	136	116	97
GBC.4.15	240	206	197	185	168	145	124	104
GBC.4.16	256	220	210	197	179	155	132	111
GBC.4.17	272	234	223	210	191	165	140	118
GBC.4.18	288	248	237	222	202	175	149	125
GBC.4.19	304	261	250	234	213	184	157	132
GBC.4.20	320	275	263	247	224	194	165	139

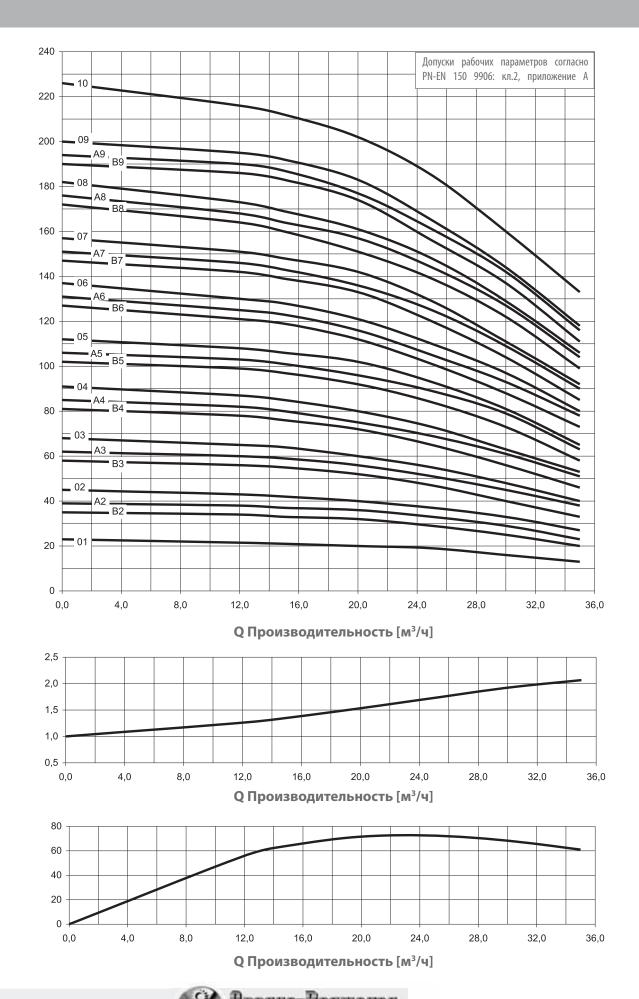


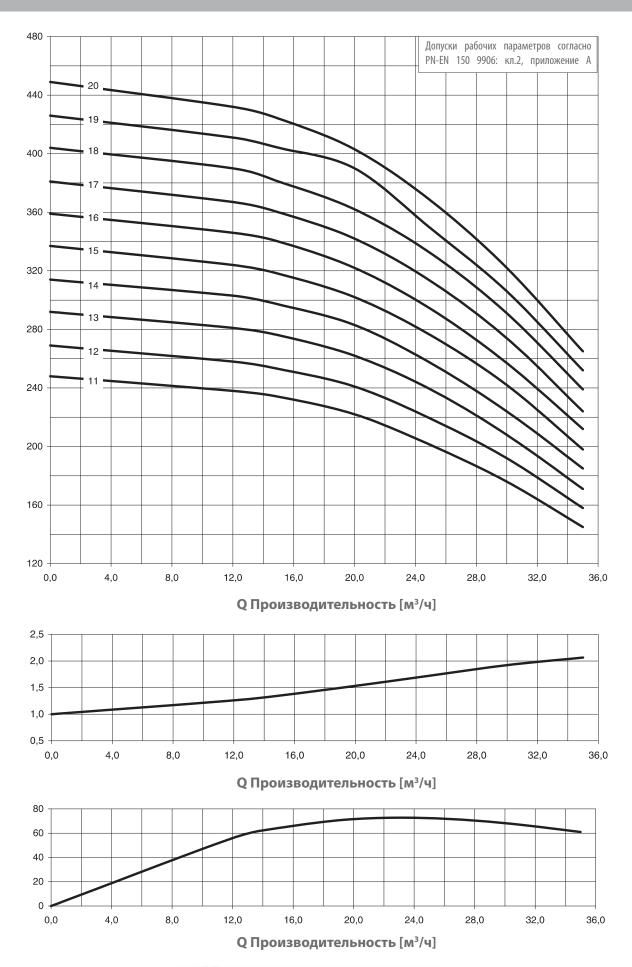

GBC.5

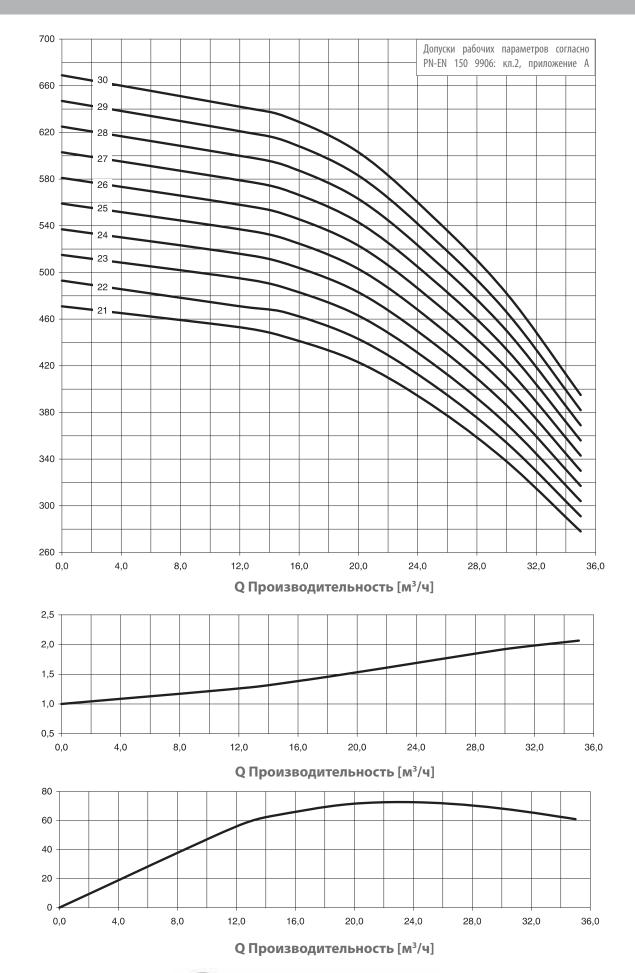

Обозна- чение	Мощ- ность	Масса насоса			SMV-6					SMH-6		
насоса	насоса (кВт)	(кг)	L _p	L,	L _a	Мощность двигателя кВт		L _p	L _s	L _a	Мощность двигателя кВт	Масса состава кг
GBC.5.01	2,4	23,5	582	521	1103	3,5	63,5	582	635	1217	3,7	62,5
GBC.5.02	3,6	30,0	694	552	1246	5,5	74,0	694	678	1372	5,5	73,0
GBC.5.03	5,4	36,0	806	595	1401	7,5	85,0	806	710	1516	7,5	82,0
GBC.5.04	7,2	42,5	918	635	1553	9,2	96,5	918	750	1668	9,2	92,5
GBC.5.05	8,9	48,5	1030	685	1715	11,0	108,5	1030	835	1865	11,0	106,5
GBC.5.06	10,8	55,0	1142	725	1867	13,0	117,0	1142	870	2012	13,0	116,0
GBC.5.07	12,6	61,0	1254	775	2029	15,0	126,0	1254	920	2174	15,0	126,0
GBC.5.08	14,4	67,5	1366	875	2241	18,5	148,5	1366	985	2351	18,5	138,5
GBC.5.09	16,2	74,0	1478	875	2353	18,5	155,0	1478	985	2463	18,5	145,0
GBC.5.10	18,0	80,0	1590	965	2555	22,0	171,0	1590	1060	2650	22,0	158,0
GBC.5.11	19,8	86,5	1702	965	2667	22,0	177,0	1702	1060	2762	22,0	164,5
GBC.5.12	21,6	92,5	1814	1055	2869	26,0	195,0	1814	1120	2934	26,0	176,5
GBC.5.13	23,4	99,0	1926	1055	2981	26,0	202,0	1926	1120	3046	26,0	183,0
GBC.5.14	25,2	105,0	2038	1135	3173	30,0	214,0	2038	1230	3268	30,0	199,0
GBC.5.15	27,0	111,5	2150	1135	3285	30,0	220,5	2150	1230	3380	30,0	205,5
GBC.5.16	28,8	117,5	2262	1315	3577	37,0	247,5	2262	1280	3542	34,0	215,5
GBC.5.17	30,6	124,0	2374	1315	3689	37,0	254,0	2374	1280	3654	34,0	222,0

		Пр	оизво	дител	ьност	ь Q [м [:]	⁵ /4]	
Обозна-	0	30	40	50	60	65	70	75
чение		Про	извод	итель	ность	Q [л/n	лин]	
насоса	0	500	667	833	1000	1083	1166	1250
				H	м]			
GBC.5.01	15	12	11	10	8	-	-	-
GBC.5.02	30	24	22	19	16	13	9	4
GBC.5.03	45	36	33	29	24	20	16	11
GBC.5.04	60	48	44	39	32	27	24	19
GBC.5.05	75	60	55	49	40	35	30	24
GBC.5.06	90	72	66	59	48	42	36	29
GBC.5.07	105	84	77	68	56	49	42	34
GBC.5.08	124	97	88	78	64	57	49	39
GBC.5.09	137	107	97	87	71	63	54	43
GBC.5.10	150	120	110	98	80	71	61	48
GBC.5.11	165	132	121	108	88	78	67	53
GBC.5.12	180	144	132	118	96	85	73	58
GBC.5.13	199	157	143	127	104	92	79	63
GBC.5.14	214	169	154	137	112	99	85	67
GBC.5.15	229	181	165	147	120	105	91	72
GBC.5.16	244	193	176	157	128	113	98	77
GBC.5.17	259	205	187	167	136	120	104	82

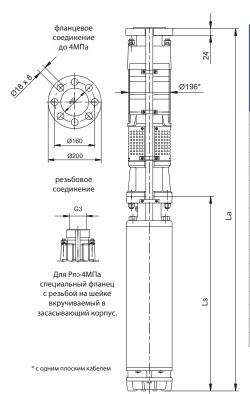




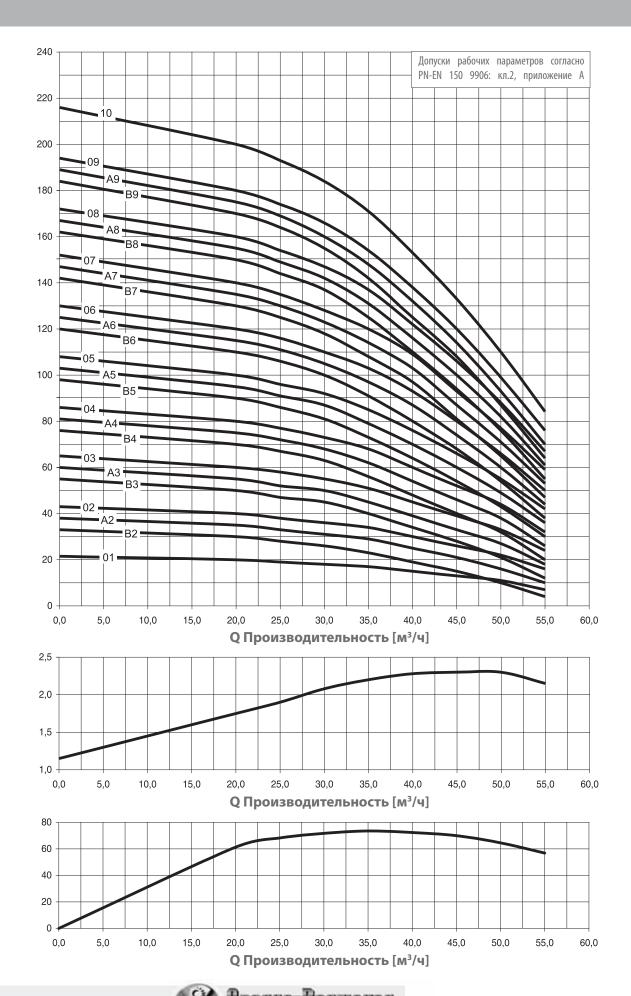

Обозна- чение	Мощ- ность	Масса насоса			SMV-6					SMH-6		
насоса	насоса (кВт)	(кг)	L _p	L _s	L _a	Мощность двигателя кВт	Масса состава кг	L _p	L,	L _a	Мощность двигателя кВт	
GC.0.01	1,7	40,5	670	485	1155	2,2	73,0	670	635	1305	3,7	79,5
GC.0.02	3,3	45,0	717	521	1238	3,7	85,0	717	635	1352	3,7	84,0
GC.0.03	5,0	49,5	764	552	1316	5,5	93,5	764	678	1442	5,5	92,5
GC.0.04	6,7	54,0	811	595	1406	7,5	103,0	811	710	1521	7,5	100,0
GC.0.05	8,4	58,5	858	635	1493	9,2	112,5	858	750	1608	9,2	108,5
GC.0.06	10,0	63,0	905	685	1590	11,0	123,0	905	835	1740	11,0	121,0
GC.0.07	11,7	67,5	952	725	1677	13,0	129,5	952	870	1822	13,0	128,5
GC.0.08	13,4	72,0	999	775	1774	15,0	137,0	999	920	1919	15,0	137,0
GC.0.09	15,0	76,5	1046	875	1921	18,5	157,5	1046	985	2031	18,5	147,5
GC.0.10	16,7	81,0	1093	875	1968	18,5	166,0	1093	985	2078	18,5	152,0
GC.0.11	18,4	85,5	1140	965	2105	22,0	176,5	1140	1060	2200	22,0	163,5
GC.0.12	20,0	90,0	1187	965	2152	22,0	181,0	1187	1060	2247	22,0	168,0
GC.0.13	21,7	94,5	1234	1055	2289	26,0	197,5	1234	1120	2354	26,0	178,5
GC.0.14	23,4	106,0	1419	1055	2474	26,0	209,0	1419	1120	2539	26,0	190,0
GC.0.15	25,1	110,5	1466	1135	2601	30,0	219,5	1466	1230	2696	30,0	204,5
GC.0.16	26,7	115,0	1513	1135	2648	30,0	224,0	1513	1230	2743	30,0	209,0
GC.0.17	28,4	118,5	1560	1135	2695	30,0	227,5	1560	1230	2790	30,0	212,5
GC.0.18	30,1	123,0	1607	1315	2922	37,0	253,0	1607	1280	2887	34,0	221,0
GC.0.19	31,7	127,5	1564	1315	2969	37,0	257,5	1564	1280	2934	34,0	225,5
GC.0.20	33,4	132,0	1701	1315	3016	37,0	262,0	1701	1360	3061	37,0	237,0
GC.0.21	35,1	136,5	1748	1315	3063	37,0	266,5	1748	1360	3108	37,0	241,5

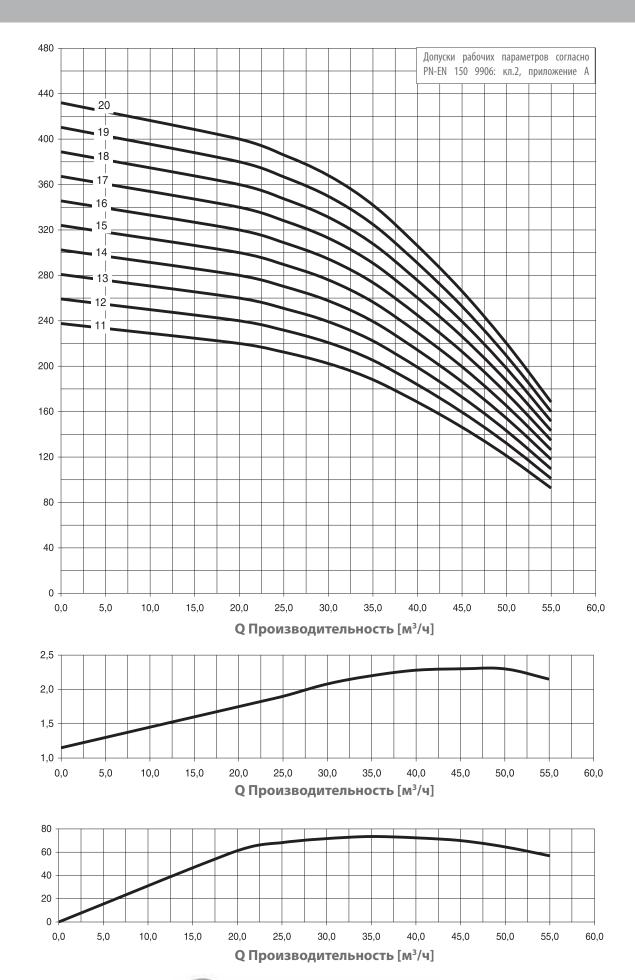

		Пр	оизво	лител	ьност	ь О Гм	³ /u1	
0.5	0	6	10	15	20	25	28	30
Обозна- чение			извод					
насоса	0	100	167	250	333	417	467	500
		100	107			417	407	300
CC 0 01	22	04	20		M]	15	12	10
GC.0.01 GC.0.02	22 45	21 44	20 43	19 42	18 38	15 31	26	10 20
	67						38	
GC.0.03		66	64	63	56	46		31
GC.0.04	90	89	88	85	74	61	50	41
GC.0.05	112	111	110	104	93	74	62	51
GC.0.06	134	133	132	128	111	89	73	61
GC.0.07	157	155	153	148	130	103	85	71
GC.0.08	182	177	175	168	148	117	96	81
GC.0.09	204	199	197	189	166	132	107	92
GC.0.10	226	221	218	206	185	146	119	101
GC.0.11	248	244	241	230	203	160	133	112
GC.0.12	280	270	265	250	221	176	146	122
GC.0.13	305	296	289	270	240	193	156	133
GC.0.14	335	322	312	288	258	209	172	143
GC.0.15	353	343	335	314	278	224	184	153
GC.0.16	377	366	357	335	297	241	197	163
GC.0.17	398	388	379	357	318	255	211	173
GC.0.18	422	408	398	379	337	269	225	184
GC.0.19	439	428	418	398	353	284	237	194
GC.0.20	459	446	436	415	358	295	247	204
GC.0.21	478	463	453	432	373	305	257	214
GC.0.22	500	480	470	450	389	315	267	224
GC.0.23	510	498	488	466	404	325	277	235
GC.0.24	525	515	505	482	419	336	288	245
GC.0.25	543	532	522	499	434	346	298	255
GC.0.26	561	549	539	516	449	355	307	264
GC.0.27	579	566	556	533	464	366	318	274
GC.0.28	597	583	573	550	479	376	329	285
GC.0.29	615	600	590	567	494	385	338	295
GC.0.30	633	617	607	584	509	396	347	305

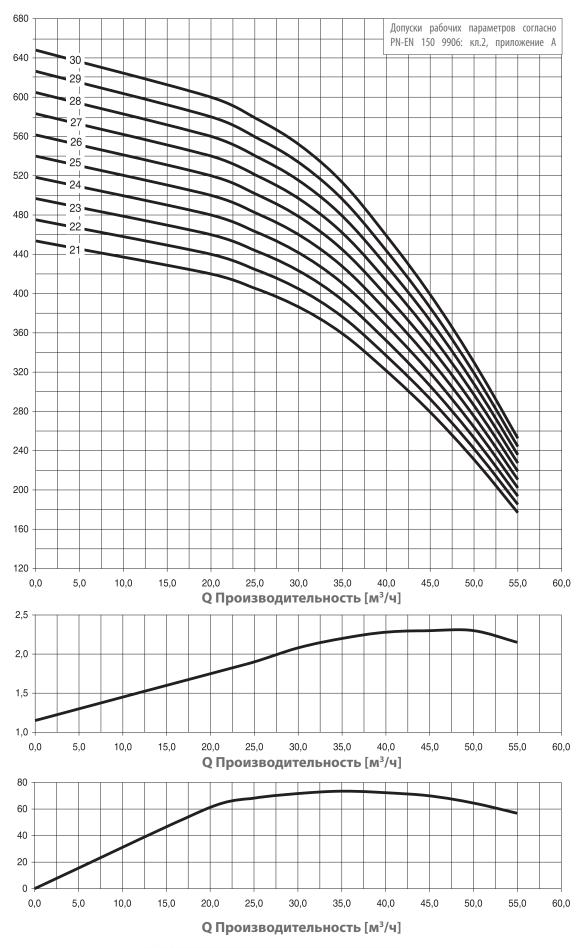
Обозна- чение	Мощ- ность	Масса насоса			SMV-8					SMH-8		
насоса	насоса (кВт)	(кг)	L _p	L,	L _a	Мощность двигателя кВт	Масса состава кг	L,	L,	L _a	Мощность двигателя кВт	Масса состава кг
GC.0.07	11,7	77,5	1002	695	1697	13,0	174,5	1002	754	1756	15,0	157,5
GC.0.08	13,4	82,0	1049	695	1744	15,0	179,0	1049	754	1803	15,0	162,0
GC.0.09	15,0	86,5	1096	765	1861	18,5	196,5	1096	794	1890	18,5	172,5
GC.0.10	16,7	91,0	1143	765	1908	18,5	201,0	1143	794	1937	18,5	177,0
GC.0.11	18,4	95,5	1190	765	1955	22,0	205,5	1190	834	2024	22,0	188,5
GC.0.12	20,0	100,0	1237	765	2002	22,0	210,0	1237	834	2071	22,0	193,0
GC.0.13	21,7	104,5	1284	845	2129	26,0	230,5	1284	929	2213	30,0	211,5
GC.0.14	23,4	116,0	1469	845	2314	26,0	242,5	1469	929	2398	30,0	223,0
GC.0.15	25,1	120,5	1516	845	2361	30,0	246,5	1516	929	2445	30,0	227,5
GC.0.16	26,7	125,0	1563	845	2408	30,0	251,0	1563	929	2492	30,0	232,0
GC.0.17	28,4	128,5	1610	845	2455	30,0	254,5	1610	929	2539	30,0	235,5
GC.0.18	30,1	133,0	1657	925	2582	37,0	275,0	1657	1014	2671	37,0	253,0
GC.0.19	31,7	137,5	1704	925	2629	37,0	279,5	1704	1014	2718	37,0	257,5
GC.0.20	33,4	142,0	1751	925	2676	37,0	284,0	1751	1014	2765	37,0	262,0
GC.0.21	35,1	146,5	1798	925	2723	37,0	288,5	1798	1014	2812	37,0	266,5
GC.0.22	36,7	151,0	1845	995	2840	45,0	307,0	1845	1094	2939	45,0	283,0
GC.0.23	38,4	155,5	1892	995	2887	45,0	311,5	1892	1094	2986	45,0	287,5
GC.0.24	40,1	160,0	1939	995	2934	45,0	316,0	1939	1094	3033	45,0	292,0
GC.0.25	41,8	164,5	1986	995	2981	45,0	320,5	1986	1094	3080	45,0	296,5
GC.0.26	43,5	169,0	2033	1065	3098	52,0	339,0	2033	1174	3207	55,0	313,0
GC.0.27	45,2	173,5	2080	1065	3145	52,0	343,5	2080	1174	3254	55,0	317,5
GC.0.28	46,9	178,0	2127	1065	3192	52,0	348,0	2127	1174	3301	55,0	322,0
GC.0.29	48,6	182,5	2174	1065	3269	52,0	525,5	2174	1174	3348	55,0	326,5
GC.0.30	50,3	187,0	2221	1065	3286	55,0	357,0	2221	1174	3395	55,0	331,0



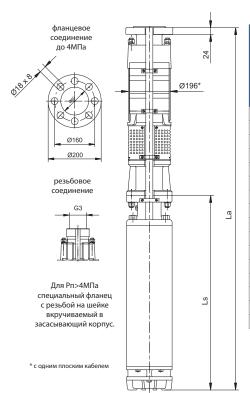
производетватья компьина

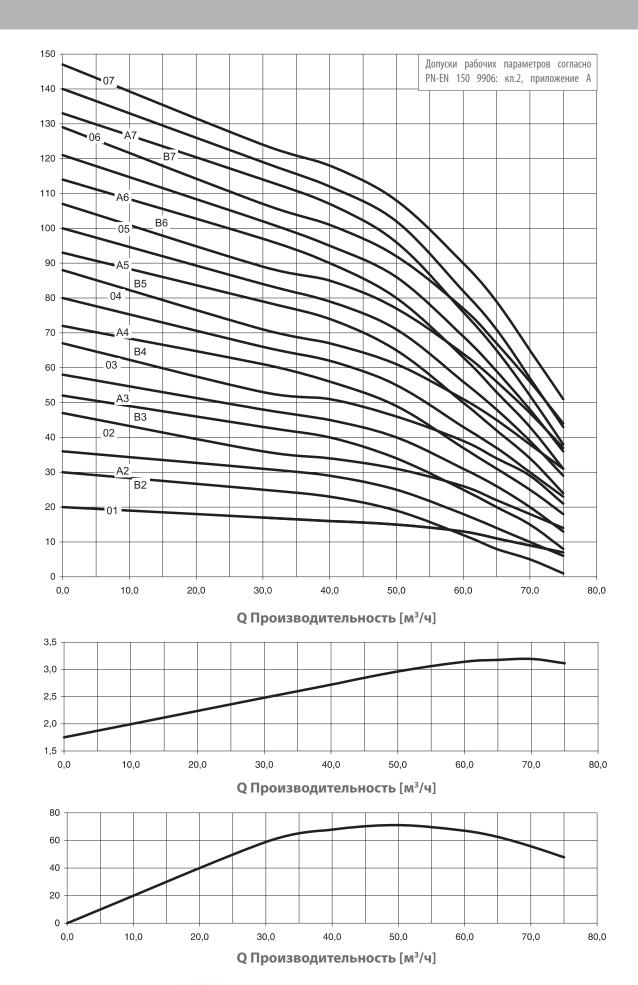

www.svprk.ru svpk@mi.ru GC.2

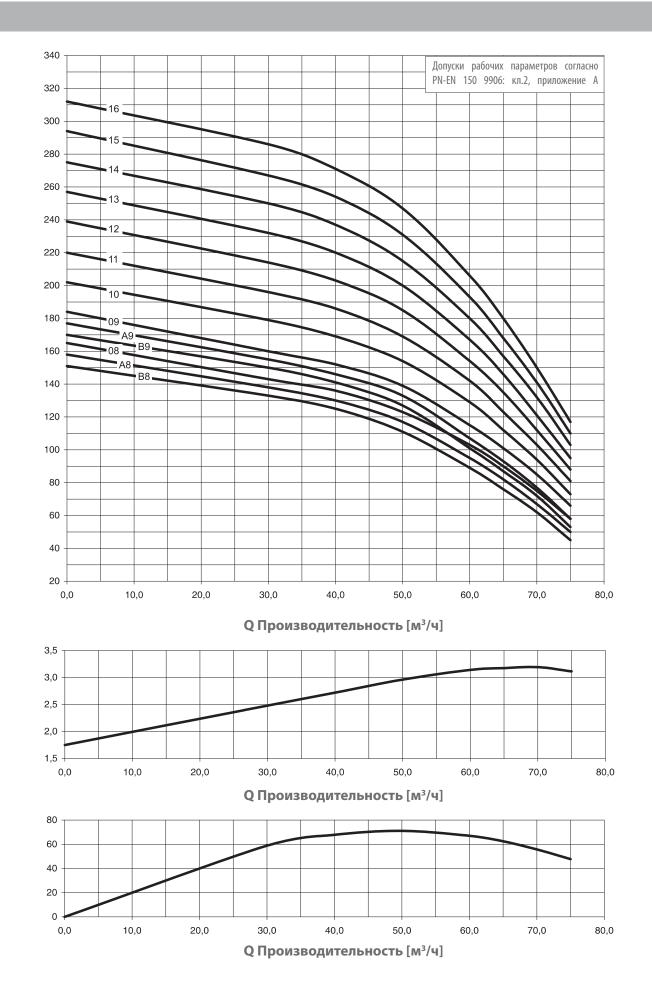

Обозна- чение	Мощ- ность	Масса насоса			SMV-6					SMH-6		
насоса	насоса (кВт)	(кг)	L _p	L,	L _a	Мощность двигателя кВт	Масса состава кг	L _p	L,	L,	Мощность двигателя кВт	
GC.2.01	2,1	42,0	678	502	1180	3,0	78,0	-	-	-	-	-
GC.2.02	4,2	47,0	733	552	1285	5,5	91,0	733	678	1411	5,5	90,0
GC.2.03	6,3	52,0	788	595	1383	7,5	101,0	788	710	1498	7,5	98,0
GC.2.04	8,3	57,0	843	635	1478	9,2	111,0	843	750	1593	9,2	107,0
GC.2.05	10,2	62,0	897	685	1583	11,0	122,0	897	835	1732	11,0	120,0
GC.2.06	12,4	67,0	953	775	1728	15,0	132,0	953	920	1873	15,0	132,0
GC.2.07	14,3	72,0	1008	875	1883	18,5	153,0	1008	985	1993	18,5	143,0
GC.2.08	16,5	77,0	1063	875	1938	18,5	158,0	1063	985	2048	18,5	148,0
GC.2.09	18,5	82,0	1118	965	2083	22,0	173,0	1118	1060	2178	22,0	160,0
GC.2.10	20,4	87,0	1173	965	2138	22,0	178,0	1173	1060	2233	22,0	165,0
GC.2.11	22,3	92,0	1228	1055	2283	26,0	195,0	1228	1120	2348	26,0	176,0
GC.2.12	24,3	97,0	1283	1055	2338	26,0	200,0	1283	1120	2403	26,0	181,0
GC.2.13	26,4	102,0	1338	1135	2473	30,0	211,0	1338	1230	2568	30,0	196,0
GC.2.14	28,4	115,0	1531	1135	2666	30,0	224,0	1531	1230	2761	30,0	209,0
GC.2.15	30,4	120,0	1586	1315	2901	37,0	250,0	1586	1280	2866	34,0	218,0
GC.2.16	33,1	125,0	1641	1315	2956	37,0	255,0	1641	1360	3001	37,0	230,0
GC.2.17	35,0	130,0	1696	1315	3011	37,0	260,0	1696	1360	3056	37,0	235,0

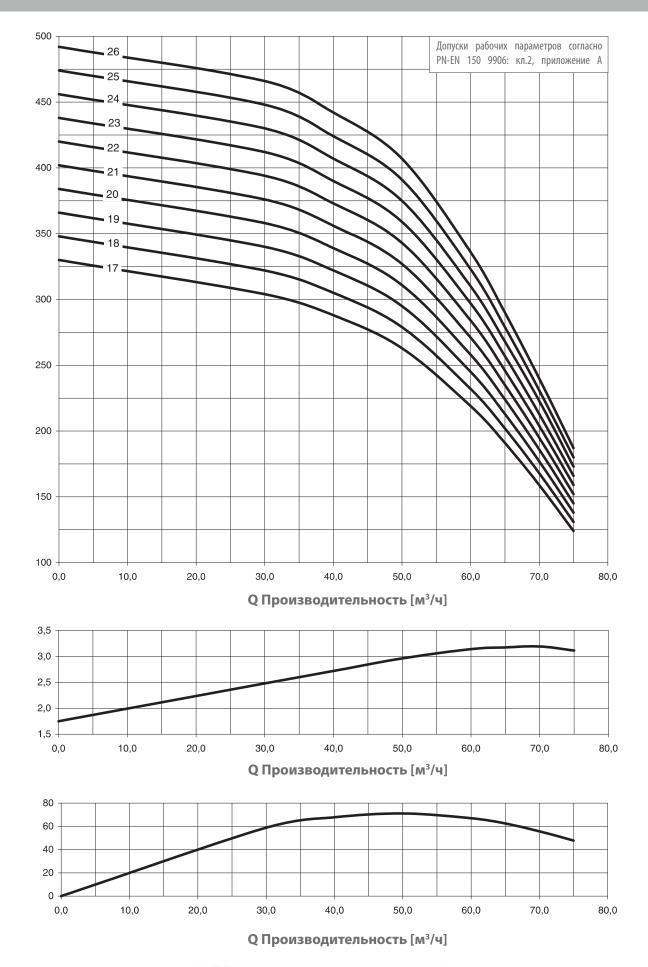

		Произ	ВОЛИ	ельно	ость О	[m³/u]	
06	0	12	15	20	25	30	35
Обозна- чение		lроизі					
насоса	0	200	250	333	417	500	583
	-	200	230	Н[м]	71/	300	303
GC.2.01	23	21,5	21	20	19	16	13
GC.2.02	45	43	42	41	38	33	27
GC.2.02	68	65	64	60	55	48	40
	91						53
GC.2.04	112	87 108	85 106	80 102	73 93	63 81	65
GC.2.05							
GC.2.06	137	130	128	121 142	110	97	80
GC.2.07	157	151	148		129	111	92
GC.2.08	182	173	169	161	148	129	106
GC.2.09	200	195	192	183	165	144	118
GC.2.10	226	216	212	202	185	160	133
GC.2.11	248	238	234	222	201	176	145
GC.2.12	269	258	253	241	219	192	158
GC.2.13	292	281	276	262	239	208	171
GC.2.14	314	303	297	283	257	224	185
GC.2.15	337	324	318	302	276	242	198
GC.2.16	359	346	340	322	294	257	212
GC.2.17	381	367	360	342	313	274	224
GC.2.18	404	390	381	362	332	291	239
GC.2.19	426	411	404	380	349	306	252
GC.2.20	449	432	424	403	368	322	265
GC.2.21	471	453	445	423	386	338	278
GC.2.22	493	471	466	443	404	354	291
GC.2.23	515	495	487	463	422	370	304
GC.2.24	537	516	508	483	440	386	317
GC.2.25	559	537	529	503	458	402	330
GC.2.26	581	558	550	523	476	418	343
GC.2.27	603	579	571	543	494	434	356
GC.2.28	625	600	592	563	512	450	369
GC.2.29	647	621	613	583	530	466	382
GC.2.30	669	642	634	603	548	482	395

Обозна- чение	Мощ- ность	Масса насоса			SMV-8					SMH-8		
насоса	насоса (кВт)	(кг)	L _p	L _s	L _a	Мощность двигателя кВт	Масса состава кг	Ļ,	L _s	L _a	Мощность двигателя кВт	Масса состава кг
GC.2.02	4,2	52,0	-	-	-	-	-	783	659	1442	7,5	118,0
GC.2.03	6,3	57,0	-	-	-	-	-	838	659	1497	7,5	123,0
GC.2.04	8,3	62,0	-	-	-	-	-	893	704	1597	11,0	135,0
GC.2.05	10,2	67,0	-	-	-	-	-	948	704	1652	11,0	140,0
GC.2.06	12,4	72,0	1003	695	1698	15,0	169,0	1003	754	1757	15,0	152,0
GC.2.07	14,3	77,0	1058	765	1823	18,5	187,0	1058	794	1852	18,5	163,0
GC.2.08	16,5	82,0	1113	765	1878	18,5	192,0	1113	794	1907	18,5	168,0
GC.2.09	18,5	87,0	1168	765	1933	22,0	197,0	1168	834	2002	22,0	180,0
GC.2.10	20,4	92,0	1223	765	1988	22,0	202,0	1223	834	2057	22,0	185,0
GC.2.11	22,3	97,0	1278	845	2123	26,0	223,0	1278	929	2207	30,0	204,0
GC.2.12	24,3	102,0	1333	845	2178	26,0	228,0	1333	929	2262	30,0	209,0
GC.2.13	26,4	107,0	1388	845	2233	30,0	233,0	1388	929	2317	30,0	214,0
GC.2.14	28,4	124,0	1581	845	2426	30,0	250,0	1581	929	2510	30,0	219,0
GC.2.15	30,4	129,0	1636	925	2561	37,0	271,0	1636	1014	2650	37,0	249,0
GC.2.16	33,1	134,0	1691	925	2616	37,0	276,0	1691	1014	2705	37,0	254,0
GC.2.17	35,0	139,0	1746	925	2671	37,0	281,0	1748	1014	2762	37,0	259,0
GC.2.18	37,3	144,0	1801	995	2796	45,0	300,0	1801	1094	2895	45,0	276,0
GC.2.19	39,4	149,0	1856	995	2851	45,0	305,0	1856	1094	2950	45,0	281,0
GC.2.20	41,4	154,0	1911	995	2906	45,0	310,0	1911	1094	3005	45,0	286,0
GC.2.21	43,5	159,0	1966	995	2961	45,0	315,0	1966	1094	3060	55,0	291,0
GC.2.22	45,6	164,0	2021	1065	3086	52,0	334,0	2021	1174	3195	55,0	308,0
GC.2.23	47,7	169,0	2076	1065	3141	52,0	339,0	2076	1174	3250	55,0	313,0
GC.2.24	49,8	174,0	2131	1065	3196	55,0	344,0	2131	1174	3305	55,0	318,0
GC.2.25	51,9	179,0	2186	1065	3251	55,0	349,0	2186	1174	3360	55,0	323,0
GC.2.26	54,0	184,0	2241	1135	3376	60,0	368,0	2241	1254	3495	63,0	340,0
GC.2.27	56,1	189,0	2296	1135	3431	60,0	373,0	2296	1254	3550	63,0	345,0
GC.2.28	58,2	194,0	2351	1235	3586	67,0	398,0	2351	1254	3605	63,0	350,0
GC.2.29	60,3	199,0	2406	1235	3641	67,0	403,0	2406	1254	3660	63,0	355,0
GC.2.30	62,4	204,0	2461	1235	3696	67,0	408,0	2461	1354	3815	75,0	376,0

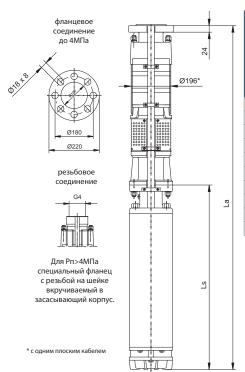

mponabonetaaman kumbona

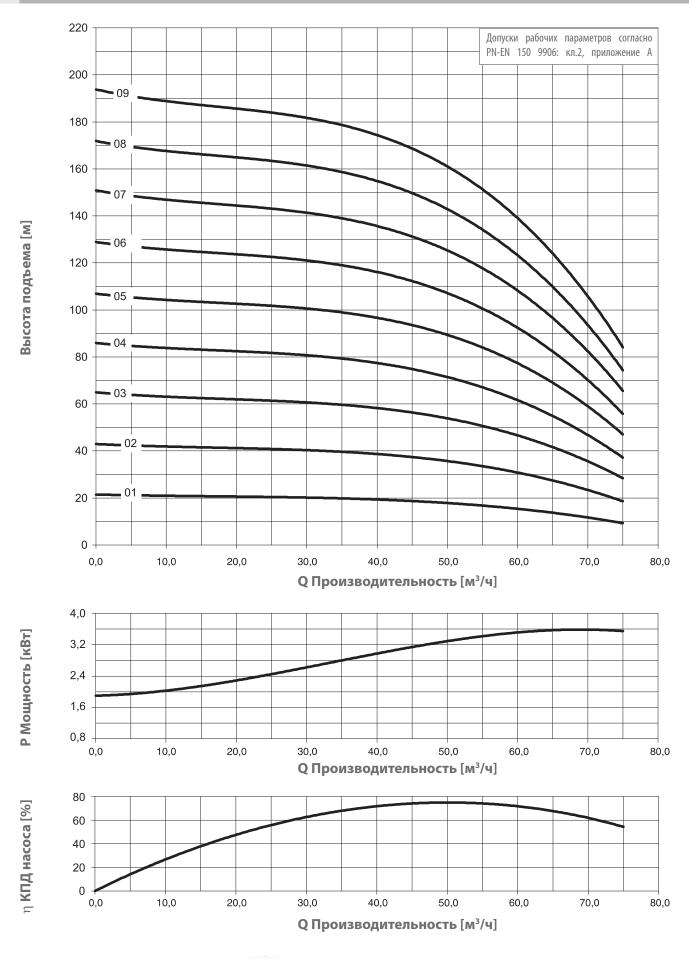

GC.3

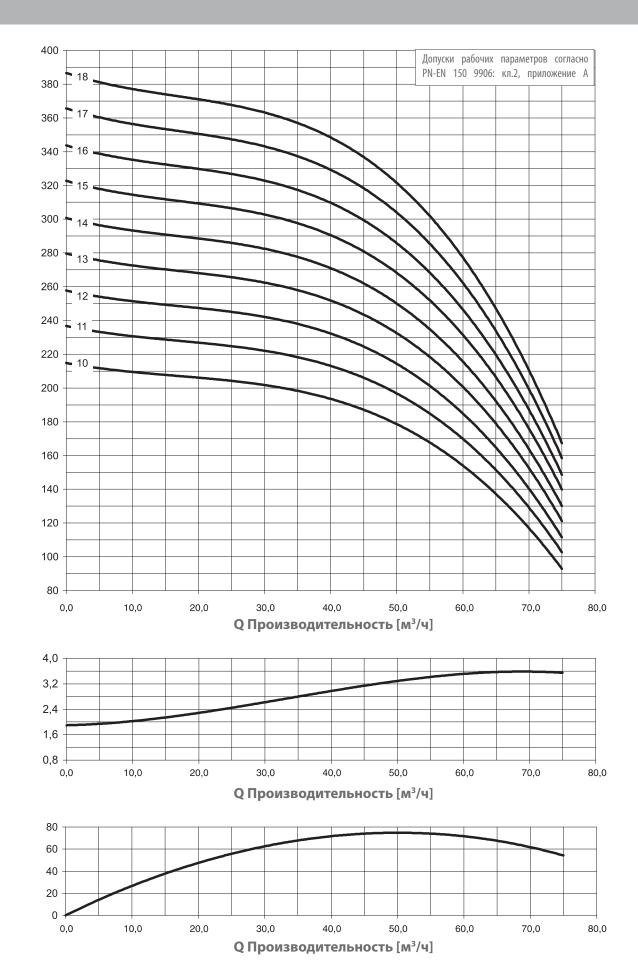



Обозна- чение	Мощ- ность	Масса насоса			SMV-6					SMH-6		
насоса	насоса (кВт)	(кг)	L _p	L,	L _a	Мощность двигателя кВт	Масса состава кг	L,	L,	L _a	Мощность двигателя кВт	Масса состава кг
GC.3.01	2,6	42,0	678	502	1180	3,0	78,0	678	635	1313	3,7	85,0
GC.3.02	4,5	47,0	733	552	1285	5,5	91,0	733	678	1411	5,5	90,0
GC.3.03	6,6	52,0	788	595	1383	7,5	101,0	788	710	1498	7,5	98,0
GC.3.04	8,8	57,0	843	685	1528	11,0	117,0	843	835	1678	11,0	115,0
GC.3.05	11,0	62,0	898	725	1623	13,0	124,0	898	870	1768	13,0	120,0
GC.3.06	13,2	67,0	953	775	1728	15,0	132,0	953	920	1873	15,0	132,0
GC.3.07	15,4	72,0	1008	875	1883	18,5	153,0	1008	985	1993	18,5	143,0
GC.3.08	17,6	77,0	1063	965	2028	22,0	168,0	1063	1060	2123	22,0	155,0
GC.3.09	19,8	82,0	1118	965	2083	22,0	173,0	1118	1060	2178	22,0	160,0
GC.3.10	22,0	87,0	1173	1055	2228	26,0	190,0	1173	1120	2293	26,0	171,0
GC.3.11	24,2	92,0	1228	1055	2283	26,0	195,0	1228	1120	2348	26,0	176,0
GC.3.12	26,4	97,0	1283	1135	2418	30,0	206,0	1283	1230	2513	30,0	191,0
GC.3.13	28,6	102,0	1338	1315	2653	37,0	232,0	1338	1280	2618	34,0	200,0
GC.3.14	30,8	115,0	1531	1315	2846	37,0	245,0	1531	1280	2811	34,0	215,0
GC.3.15	33,0	120,0	1586	1315	2901	37,0	250,0	1586	1360	2946	37,0	225,0
GC.3.16	35,2	125,0	1641	1315	2956	37,0	255,0	1641	1360	3001	37,0	230,0

		П	роизі	водит	ельн	ость () [M³/ч	d	
Обозна-	0	20	25	30	35	40	45	50	55
чение		Пр	оизв	одите	льно	сть Q	[л/ми	н]	
насоса	0	333	417	500	583	667	750	833	917
					Н [м]				
GC.3.01	21,5	20	19	18	17	15	13	11	7
GC.3.02	43	40	38	36	34	30	26	22	16
GC.3.03	65	60	58	55	51	45	39	33	24
GC.3.04	86	80	77	73	68	60	52	44	32
GC.3.05	108	100	96	92	85	76	66	55	42
GC.3.06	130	120	116	110	103	93	80	66	50
GC.3.07	152	140	135	128	120	109	93	77	59
GC.3.08	172	160	154	147	137	122	106	88	67
GC.3.09	194	180	174	166	154	138	120	99	76
GC.3.10	216	200	193	184	171	153	133	110	84
GC.3.11	238	220	212	202	188	168	146	121	93
GC.3.12	259	240	232	221	205	184	160	132	101
GC.3.13	281	260	251	239	222	199	173	143	109
GC.3.14	302	280	270	258	239	214	186	154	118
GC.3.15	324	300	290	276	257	230	200	165	126
GC.3.16	346	320	309	294	274	245	213	176	135
GC.3.17	367	340	328	313	291	260	226	187	143
GC.3.18	389	360	347	331	308	275	239	198	152
GC.3.19	410	380	367	350	325	291	253	209	160
GC.3.20	432	400	386	368	342	306	266	220	168
GC.3.21	454	420	405	386	359	321	279	231	177
GC.3.22	475	440	425	405	376	337	293	242	185
GC.3.23	497	460	444	423	393	352	306	253	194
GC.3.24	518	480	463	442	410	367	319	264	202
GC.3.25	540	500	483	460	428	383	333	275	211
GC.3.26	562	520	502	478	445	398	346	286	219
GC.3.27	583	540	521	497	462	413	359	297	227
GC.3.28	605	560	540	515	479	428	372	308	236
GC.3.29	626	580	560	534	496	444	386	319	244
GC.3.30	648	600	579	552	513	459	399	330	253


Обозна- чение	Мощ- ность	Масса насоса			SMV-8					SMH-8		
насоса	насоса (кВт)	(кг)	L _p	L,	L _a	Мощность двигателя	Масса состава	L _p	L,	L _a	Мощность двигателя	Масса состава
						кВт	КГ				кВт	КГ
GC.3.01	2,6	47,0	-	-	-	-	-	-	-	-	-	-
GC.3.02	5,0	52,0	-	-	-	-	-	783	659	1442	7,5	118,0
GC.3.03	7,3	57,0	-	-	-	-	-	838	659	1497	7,5	123,0
GC.3.04	9,5	62,0	-	-	-	-	-	893	704	1597	11,0	135,0
GC.3.05	11,0	67,0	948	695	1643	13,0	164,0	948	754	1702	15,0	147,0
GC.3.06	13,2	72,0	1003	695	1698	15,0	169,0	1003	754	1757	15,0	152,0
GC.3.07	16,7	77,0	1058	765	1823	18,5	187,0	1058	794	1852	18,5	163,0
GC.3.08	15,4	82,0	1113	765	1878	22,0	192,0	1113	834	1947	22,0	175,0
GC.3.09	17,6	87,0	1168	765	1933	22,0	197,0	1168	834	2002	22,0	180,0
GC.3.10	19,8	92,0	1223	845	2068	26,0	218,0	1223	929	2152	30,0	199,0
GC.3.11	24,2	97,0	1278	845	2123	26,0	223,0	1278	929	2207	30,0	204,0
GC.3.12	26,4	102,0	1333	845	2178	30,0	228,0	1333	929	2262	30,0	209,0
GC.3.13	28,6	107,0	1388	925	2313	37,0	249,0	1388	929	2317	30,0	214,0
GC.3.14	30,8	124,0	1581	925	2506	37,0	266,0	1581	1014	2595	37,0	244,0
GC.3.15	33,0	129,0	1636	925	2561	37,0	271,0	1636	1014	2650	37,0	249,0
GC.3.16	35,2	134,0	1691	925	2616	37,0	276,0	1691	1014	2705	37,0	254,0
GC.3.17	37,4	139,0	1746	995	2741	45,0	295,0	1746	1094	2840	45,0	271,0
GC.3.18	39,6	144,0	1801	995	2796	45,0	300,0	1801	1094	2895	45,0	276,0
GC.3.19	41,8	149,0	1856	995	2851	45,0	305,0	1856	1094	2950	45,0	281,0
GC.3.20	44,0	154,0	1911	1065	2976	52,0	324,0	1911	1174	3085	55,0	298,0
GC.3.21	46,2	159,0	1966	1065	3031	52,0	329,0	1966	1174	3140	55,0	303,0
GC.3.22	48,4	164,0	2021	1065	3086	52,0	334,0	2021	1174	3195	55,0	308,0
GC.3.23	50,6	169,0	2076	1065	3141	55,0	339,0	2076	1174	3250	55,0	313,0
GC.3.24	52,8	174,0	2131	1065	3196	55,0	344,0	2131	1174	3305	55,0	318,0
GC.3.25	55,0	179,0	2186	1135	3321	60,0	363,0	2186	1254	3440	63,0	335,0
GC.3.26	57,2	184,0	2241	1135	3376	60,0	368,0	2241	1254	3495	63,0	340,0
GC.3.27	59,4	189,0	2296	1235	3531	67,0	393,0	2296	1254	3550	63,0	345,0
GC.3.28	61,6	194,0	2351	1235	3586	67,0	398,0	2351	1354	3705	75,0	366,0
GC.3.29	63,8	199,0	2406	1235	3641	67,0	403,0	2406	1354	3760	75,0	371,0
GC.3.30	66,0	204,0	2461	1335	3796	75,0	427,0	2461	1354	3815	75,0	376,0


GC.5



Обозна- чение	Мощ- ность	Масса насоса			SMV-6					SMH-6		
насоса	насоса (кВт)	(кг)	L _p	L,	L _a	Мощность двигателя кВт		Ļ	L,	L _a	Мощность двигателя кВт	
GC.5.01	3,4	44,0	685	521	1206	4,0	64,0	-	-	-	-	-
GC.5.02	6,7	49,0	747	595	1342	7,5	98,0	647	710	1357	7,5	95,0
GC.5.03	9,6	54,0	809	685	1494	11,0	114,0	709	835	1544	11,0	112,5
GC.5.04	12,5	59,0	871	775	1646	15,0	124,0	771	920	1691	15,0	124,0
GC.5.05	15,5	65,0	933	875	1808	18,5	146,0	833	985	1818	18,5	136,0
GC.5.06	18,6	70,0	995	965	1960	22,0	161,0	895	1060	1955	22,0	148,0
GC.5.07	21,6	76,0	1057	1055	2112	26,0	179,0	957	1120	2077	26,0	160,0
GC.5.08	24,7	81,0	1119	1055	2174	26,0	184,0	1019	1120	2139	26,0	165,0
GC.5.09	27,8	86,0	1181	1135	2316	30,0	195,0	1081	1230	2311	30,0	180,0
GC.5.10	30,9	102,0	1243	1315	2558	37,0	232,0	1267	1360	2627	37,0	207,0

		Пр	оизво,	дител	ьності	о Q [м ³	⁵ /4]	
Обозна-	0	30	40	50	60	65	70	75
чение		Про	извод	итель	ность	Q [л/n	лин]	
насоса	0	500	667	833	1000	1083	1166	1250
				H [м]			
GC.5.01	20	17	16	15	13	-11	9	7
GC.5.02	42	36	34	31	26	22	18	14
GC.5.03	67	53	51	46	39	34	29	21
GC.5.04	88	71	67	61	51	45	38	31
GC.5.05	107	89	85	77	64	56	47	37
GC.5.06	129	107	101	92	77	67	56	44
GC.5.07	147	124	118	108	90	79	65	51
GC.5.08	165	143	136	123	103	90	75	58
GC.5.09	184	160	152	139	115	101	85	66
GC.5.10	202	179	169	154	129	112	94	73
GC.5.11	220	196	186	169	142	123	103	81
GC.5.12	239	214	203	185	154	135	112	88
GC.5.13	257	232	220	200	167	146	121	95
GC.5.14	275	250	237	215	180	157	132	103
GC.5.15	294	267	254	231	193	168	141	110
GC.5.16	312	286	271	247	206	180	150	117
GC.5.17	330	304	288	263	219	191	159	124
GC.5.18	348	322	305	279	232	202	168	131
GC.5.19	366	340	322	295	245	213	177	138
GC.5.20	384	358	339	311	258	224	186	145
GC.5.21	402	376	356	327	271	235	195	152
GC.5.22	420	394	373	343	284	246	204	159
GC.5.23	438	412	390	359	297	257	213	166
GC.5.24	456	430	407	375	310	268	223	173
GC.5.25	474	448	424	391	323	279	231	180
GC.5.26	492	466	441	407	336	290	240	187

Обозна- чение	Мощ- ность	Масса насоса			SMV-8					SMH-8		
насоса	насоса (кВт)	(кг)	L _p	L,	L _a	Мощность двигателя кВт	Масса состава кг	L _p	L _s	L _a	Мощность двигателя кВт	Масса состава кг
GC.5.02	6,7	54,0	-	-	-	-	-	797	659	1456	7,5	120,0
GC.5.03	9,6	59,0	-	-	-	-	-	859	704	1563	11,0	132,0
GC.5.04	12,5	64,0	921	695	1616	15,0	161,0	921	754	1675	15,0	144,0
GC.5.05	15,5	70,0	983	765	1748	18,5	180,0	983	794	1777	13,5	156,0
GC.5.06	18,6	75,0	1045	765	1810	22,0	185,0	1045	834	1879	22,0	168,0
GC.5.07	21,6	81,0	1107	845	1952	26,0	207,0	1107	929	2036	30,0	188,0
GC.5.08	24,7	86,0	1169	845	2014	26,0	212,0	1169	929	2098	30,0	193,0
GC.5.09	27,8	91,0	1231	845	2076	30,0	217,0	1231	929	2160	30,0	198,0
GC.5.10	30,9	96,0	1293	925	2218	37,0	238,0	1293	1014	2307	37,0	216,0
GC.5.11	34,0	101,0	1355	925	2280	37,0	243,0	1355	1014	2369	37,0	221,0
GC.5.12	37,0	118,0	1555	995	2550	45,0	274,0	1555	1094	2649	45,0	250,0
GC.5.13	40,0	123,0	1617	995	2612	45,0	279,0	1617	1094	2771	45,0	255,0
GC.5.14	43,0	128,0	1679	995	2674	45,0	284,0	1679	1094	2773	45,0	260,0
GC.5.15	46,0	133,0	1741	1065	2806	52,0	303,0	1741	1174	2915	55,0	277,0
GC.5.16	49,0	138,0	1803	1065	2868	52,0	308,0	1803	1174	2977	55,0	282,0
GC.5.17	52,0	143,0	1865	1065	2930	55,0	313,0	1865	1174	3039	55,0	287,0
GC.5.18	55,0	148,0	1927	1135	3062	60,0	332,0	1927	1254	3181	63,0	304,0
GC.5.19	58,0	153,0	1989	1135	3124	60,0	337,0	1989	1254	3243	63,0	309,0
GC.5.20	61,0	158,0	2051	1235	3286	67,0	362,0	2051	1254	3305	63,0	314,0
GC.5.21	64,0	163,0	2113	1235	3348	67,0	367,0	2113	1354	3467	75,0	335,0
GC.5.22	67,0	168,0	2175	1335	3510	75,0	391,0	2175	1354	3529	75,0	340,0
GC.5.23	70,0	173,0	2237	1335	3752	75,0	396,0	2237	1354	3591	75,0	345,0
GC.5.24	73,0	178,0	2299	1335	3634	75,0	401,0	2299	1354	3653	75,0	350,0
GC.5.25	76,0	183,0	2361	1415	3766	83,0	422,0	2361	1414	3775	90,0	364,0
GC.5.26	79,0	188,0	2423	1415	3838	83,0	427,0	2423	1414	3837	90,0	369,0

40,0

Q Производительность [м³/ч]

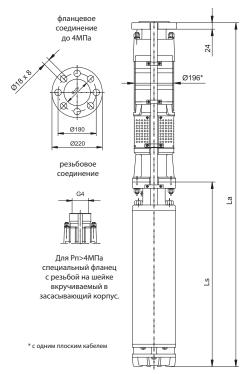
50,0

60,0

70,0

80,0

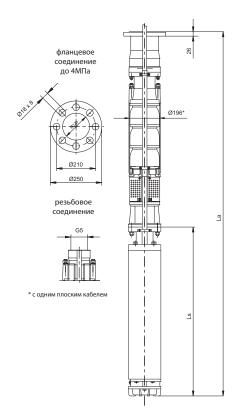
0


0,0

10,0

20,0

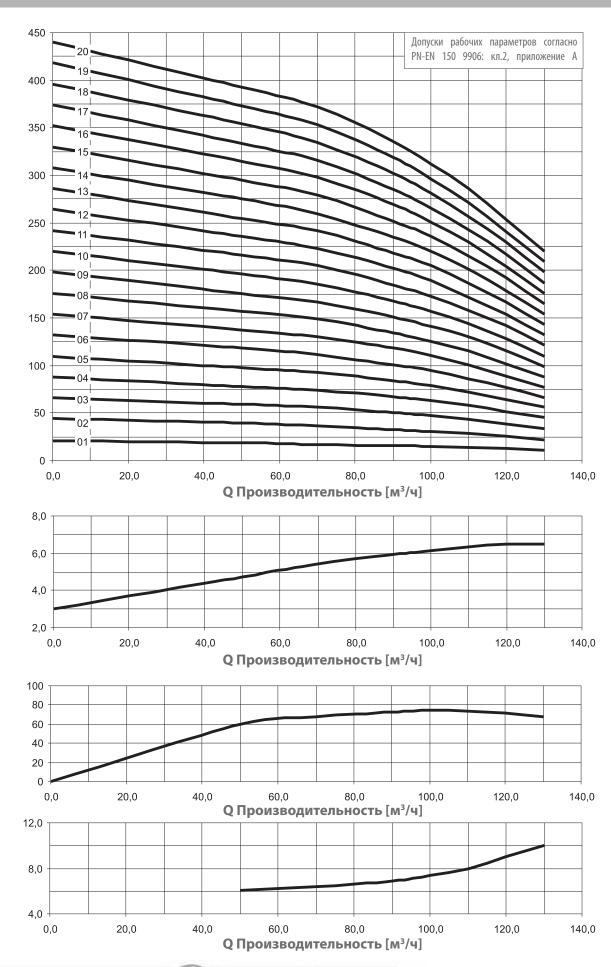
30,0


GCA.5

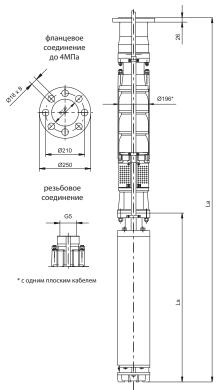
Обозна- чение	Мощ- ность	Масса насоса			SMV-6					SMH-6		
насоса	насоса (кВт)	(кг)	L _p	Ls	L _a	Мощность двигателя кВт		L,	L,	L _a	Мощность двигателя кВт	
GCA.5.01	4,3	45	712	552	1264	5,5	89	712	678	1390	5,5	88
GCA.5.02	7,2	51	780	595	1375	7,5	100	780	710	1490	7,5	97
GCA.5.03	10,8	57	848	685	1533	11,0	117	848	835	1683	11,0	115
GCA.5.04	14,4	62	916	775	1691	15,0	127	916	920	1836	15,0	127
GCA.5.05	18,0	69	984	875	1859	18,5	150	984	985	1969	18,5	140
GCA.5.06	21,6	75	1052	965	2017	22,0	166	1052	1060	2112	22,0	153
GCA.5.07	25,2	82	1120	1055	2175	26,0	185	1120	1120	2240	26,0	166
GCA.5.08	28,8	87	1188	1135	2323	30,0	196	1188	1230	2418	30,0	181
GCA.5.09	32,4	93	1256	1315	2571	37,0	223	1256	1280	2536	34,0	191
GCA.5.10	36,0	110	1324	1315	2639	37,0	240	1324	1360	2684	37,0	215

		Пр	оизво,	дител	ьності	ь Q [м [:]	/ч]	
Обозна-	0	30	40	50	60	65	70	75
чение		Про	извод	итель	ность	Q [л/n	лин]	
насоса	0	500	667	833	1000	1083	1166	1250
				H [м]			
GCA.5.01	21,5	20	19,5	18	15,5	13,5	11,5	9,5
GCA.5.02	43	40	39	36	31	27	23	19
GCA.5.03	65	60	59	54	47	41	35	29
GCA.5.04	86	80	78	72	62	54	46	38
GCA.5.05	107	100	97	90	78	68	58	48
GCA.5.06	129	120	117	108	93	81	69	57
GCA.5.07	151	140	137	126	109	95	81	67
GCA.5.08	172	160	156	144	124	108	92	76
GCA.5.09	194	180	176	162	140	122	104	86
GCA.5.10	215	200	195	180	155	135	115	95
GCA.5.11	237	220	215	198	171	149	127	105
GCA.5.12	258	240	234	216	186	162	138	114
GCA.5.13	280	260	254	234	202	176	150	124
GCA.5.14	301	280	273	252	217	189	161	133
GCA.5.15	323	300	293	270	233	203	173	143
GCA.5.16	344	320	312	288	248	216	184	152
GCA.5.17	366	340	332	306	264	230	196	162
GCA.5.18	387	360	351	324	279	243	207	171
GCA.5.19	409	380	371	342	295	257	219	181
GCA.5.20	430	400	390	360	310	270	230	190
GCA.5.21	452	420	410	378	326	284	242	200
GCA.5.22	473	440	429	396	341	297	253	209
GCA.5.23	495	460	449	414	357	311	265	219
GCA.5.24	516	480	468	432	372	324	276	228
GCA.5.25	538	500	488	450	388	338	288	238
GCA.5.26	559	520	507	468	403	351	299	247

Обозна- чение	Мощ- ность	Масса насоса			SMV-8					SMH-8		
насоса	насоса (кВт)	(кг)	L,	L,	L _a	Мощность двигателя кВт	Масса состава кг	Ļ,	L _s	La	Мощность двигателя кВт	Масса состава кг
GCA.5.02	7,2	56	-	-	-	-	-	809	659	1468	7,5	122
GCA.5.03	10,8	62	-	-	-	-	-	877	704	1581	11,0	135
GCA.5.04	14,4	67	945	695	1640	15,0	164	945	754	1699	15,0	147
GCA.5.05	18,0	74	1013	765	1778	18,5	184	1013	794	1807	18,5	160
GCA.5.06	21,6	79	1081	765	1846	22,0	189	1081	834	1915	22,0	172
GCA.5.07	25,2	86	1149	845	1994	26,0	212	1149	929	2078	30,0	193
GCA.5.08	28,8	92	1217	845	2062	30,0	218	1217	929	2146	30,0	199
GCA.5.09	32,4	97	1285	925	2210	37,0	239	1285	1014	2299	37,0	217
GCA.5.10	36,0	103	1353	925	2278	37,0	245	1353	1014	2367	37,0	223
GCA.5.11	39,6	109	1421	995	2416	45,0	265	1421	1094	2515	45,0	241
GCA.5.12	43,2	114	1489	995	2484	45,0	270	1489	1094	2583	45,0	246
GCA.5.13	46,8	120	1557	1065	2622	52,0	290	1557	1174	2731	55,0	264
GCA.5.14	50,4	126	1625	1065	2690	52,0	296	1625	1174	2799	55,0	270
GCA.5.15	54,0	132	1693	1065	2758	55,0	302	1693	1174	2867	55,0	276
GCA.5.16	57,6	137	1761	1135	2896	60,0	321	1761	1254	3015	63,0	293
GCA.5.17	61,2	143	1829	1235	3064	67,0	347	1829	1254	3083	63,0	299
GCA.5.18	64,8	149	1897	1235	3132	67,0	353	1897	1354	3251	75,0	321
GCA.5.19	68,4	154	1965	1335	3300	75,0	377	1965	1354	3319	75,0	326
GCA.5.20	72,0	160	2033	1335	3368	75,0	383	2033	1354	3387	75,0	332
GCA.5.21	75,6	166	2101	1415	3516	83,0	405	2101	1414	3515	90,0	347
GCA.5.22	79,2	171	2169	1415	3584	83,0	410	2169	1414	3583	90,0	352
GCA.5.23	82,8	177	2237	1415	3652	83,0	416	2237	1414	3651	90,0	358
GCA.5.24	86,4	183	2305	1485	3790	92,0	438	2305	1414	3719	90,0	364
GCA.5.25	90,0	189	2373	1485	3858	92,0	444	2373	1414	3787	90,0	370
GCA.5.26	93,6	204	2441	1585	4026	110,0	477	2441	1464	3905	110,0	392



		Произ	вводи	гельно	сть Q	[M³/4]	
Обозна-	0	40	55	70	85	100	115
чение		Произ	водит	ельнос	ть Q [і	п/мин]	
насоса	0	667	917	1166	1417	1666	1917
				Н [м]			
GCA.6.01	23	21	20	19	18	16	13
GCA.6.02	46	42	41	39	36	32	26
GCA.6.03	69	62	61	59	55	48	39
GCA.6.04	92	83	81	78	73	64	51
GCA.6.05	115	104	102	98	91	79	62
GCA.6.06	138	124	122	117	109	95	75
GCA.6.07	161	145	142	137	127	111	89
GCA.6.08	184	166	163	156	145	127	102
GCA.6.09	207	186	183	176	164	143	115
GCA.6.10	230	207	203	196	181	157	128
GCA.6.11	253	228	222	215	199	175	141
GCA.6.12	276	248	242	235	219	190	153
GCA.6.13	299	269	262	254	236	206	166
GCA.6.14	322	290	283	274	254	222	179
GCA.6.15	345	311	303	293	273	238	192
GCA.6.16	368	331	324	313	292	253	204
GCA.6.17	391	352	344	332	310	269	217
GCA.6.18	414	373	364	352	328	286	230
GCA.6.19	437	393	385	371	347	301	243
GCA.6.20	460	415	405	391	365	317	255

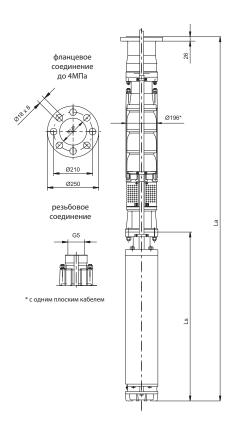

Обозна- чение	Мощ- ность	Масса насоса			SMV-6					SMH-6		
насоса	насоса (кВт)	(кг)	Ļ,	L _s	L,	Мощность двигателя кВт		L _p	L,	L _a	Мощность двигателя кВт	
GCA.6.01	5,6	62,0	860	595	1455	7,5	111,0	860	710	1570	7,5	108,0
GCA.6.02	11,3	72,0	985	745	1730	13,0	134,0	985	870	1855	13,0	133,0
GCA.6.03	17,0	82,0	1110	875	1985	18,5	163,0	1110	1060	2170	22,0	160,0
GCA.6.04	22,6	92,0	1235	1055	2290	26,0	195,0	1235	1120	2355	26,0	176,0
GCA.6.05	28,0	102,0	1360	1135	2495	30,0	211,0	1360	1230	2590	30,0	196,0
GCA.6.06	34,0	112,0	-	-	-	-	-	1485	1360	2845	37,0	217,0

Обозна- чение	Мощ- ность	Масса насоса					SMH-8					
насоса	насоса (кВт)	(кг)	L _p	L,	l,	Мощность двигателя кВт	Масса состава кг	L _p	L,	L,	Мощность двигателя кВт	
GCA.6.01	5,6	70,0	-	-	-	-	-	910	659	1569	7,5	136,0
GCA.6.02	11,3	75,0	1035	695	1730	13,0	172,0	1035	754	1789	15,0	155,0
GCA.6.03	17,0	85,0	1160	765	1925	18,5	195,0	1160	834	1994	22,0	177,0
GCA.6.04	22,6	95,0	1285	845	2130	26,0	221,0	1285	929	2214	30,0	202,0
GCA.6.05	28,0	105,0	1410	845	2255	30,0	231,0	1410	929	2339	30,0	212,0
GCA.6.06	34.0	115.0	1535	925	2460	37,0	257,0	1535	1014	2549	37,0	235,0
GCA.6.07	39,7	125,0	1660	995	2655	45,0	281,0	1660	1094	2754	45,0	257,0
GCA.6.08	45,3	145,0	1785	1065	2850	52,0	315,0	1785	1174	2959	55,0	289,0
GCA.6.09	51,0	155,0	1910	1065	2975	55,0	325,0	1910	1174	3084	55,0	299,0
GCA.6.10	56,7	165,0	2035	1135	3170	60,0	349,0	2035	1254	3289	63,0	321,0
GCA.6.11	62,3	175,0	2160	1235	3395	67,0	379,0	2160	1354	3514	75,0	374,0
GCA.6.12	68,0	185,0	2285	1355	3620	75,0	408,0	2285	1354	3639	75,0	375,0
GCA.6.13	73,7	195,0	2410	1415	3825	83,0	434,0	2410	1414	3824	90,0	376,0
GCA.6.14	79,3	205,0	2635	1415	3950	83,0	444,0	2535	1414	3949	90,0	386,0
GCA.6.15	85,0	215,0	2660	1495	4155	92,0	470,0	2660	1414	4074	90,0	396,0
GCA.6.16	90,7	225,0	-	-	-	-	-	2785	1464	4249	110,0	413,0
GCA.6.17	96,4	235,0	-	-	-	-	-	2910	1464	4374	110,0	423,0
GCA.6.18	102,0	245,0	-	-	-	-	-	3035	1464	4499	110,0	433,0

Обозна- чение	Мощ- ность	Масса насоса							SMH-10			
насоса	насоса (кг)	L _p	L,	L _a	Мощность двигателя кВт		L _p	L,	L _a	Мощность двигателя кВт		
GCA.6.12	68,0	190,0	2318	1190	3508	75,0	496,0	2318	1414	3732	75,0	448,0
GCA.6.13	73,7	200,0	2443	1310	3753	92,0	535,0	2443	1544	3987	90,0	495,0
GCA.6.14	79,3	210,0	2568	1310	3878	92,0	545,0	2568	1544	4112	90,0	505,0
GCA.6.15	85,0	220,0	2693	1310	4003	92,0	555,0	2693	1544	4237	90,0	515,0
GCA.6.16	90,7	230,0	2818	1430	4248	110,0	594,0	2818	1634	4452	110,0	551,0
GCA.6.17	96,4	240,0	2943	1430	4373	110,0	604,0	2943	1634	4577	110,0	561,0
GCA.6.18	102,0	250,0	3068	1430	4498	110,0	614,0	3068	1634	4702	110,0	571,0
GCA.6.19	107,7	260,0	3193	1570	4763	132,0	658,0	3193	1764	4957	125,0	618,0
GCA.6.20	113,4	270,0	3318	1570	4888	132,0	668,0	3318	1764	5082	125,0	628,0

GCA.7

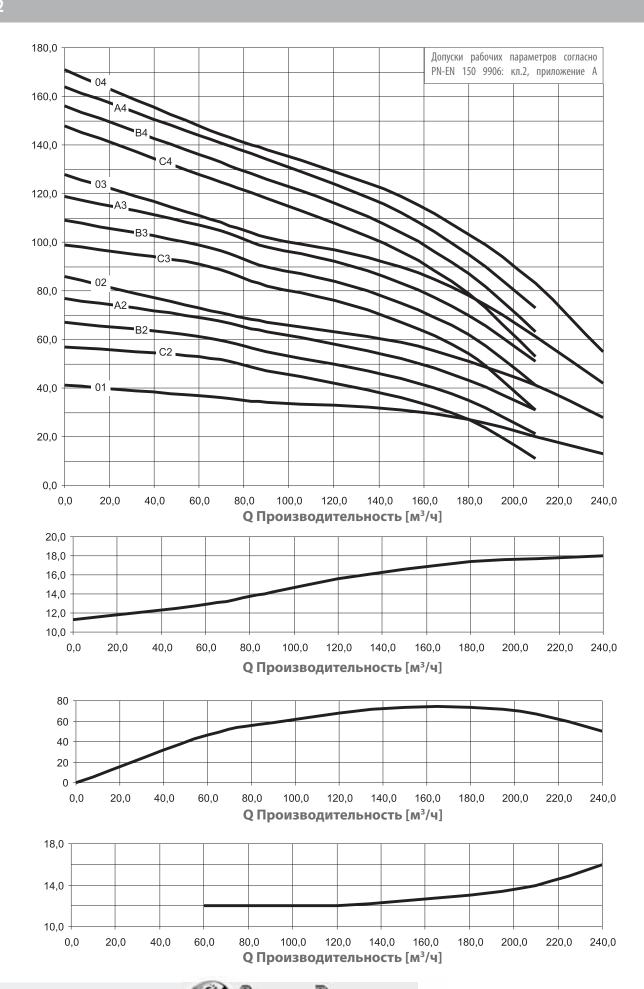
	9211 925 925 925 925 925 925 925 925 925 925	вое ение	м			SI	ī	La La
		Пр	оизво	дител	ьності	ь Q [м [:]	⁵ /4]	
Обозна-	0	50	70	90	100	110	120	130
чение		Про	извод	итель	ность	Q [л/n	лин]	
насоса	0	833	1166	1500	1666	1833	2000	2166
				H[м]			
GCA.7.01	21	19	17	16	15	14	13	11
GCA.7.02	44	39	37	33	31	29	26	22
GCA.7.03	66	59	56	50	47	43	38	34
GCA.7.04	88	78	74	67	63	58	51	45
GCA.7.05	110	98	93	84	79	72	64	56


		Пр	оизво	дител	ьност	ь Q [м [:]	⁵ /4]					
Обозна-	0	50	70	90	100	110	120	130				
чение	Производительность Q [л/мин]											
насоса	0	833	1166	1500	1666	1833	2000	2166				
	H [M]											
GCA.7.01	21	19	17	16	15	14	13	11				
GCA.7.02	44	39	37	33	31	29	26	22				
GCA.7.03	66	59	56	50	47	43	38	34				
GCA.7.04	88	78	74	67	63	58	51	45				
GCA.7.05	110	98	93	84	79	72	64	56				
GCA.7.06	132	118	112	101	95	86	77	66				
GCA.7.07	154	137	130	118	111	101	89	77				
GCA.7.08	176	157	149	134	125	115	102	88				
GCA.7.09	198	176	167	151	141	130	115	99				
GCA.7.10	220	196	186	168	157	144	128	110				
GCA.7.11	242	216	205	185	173	158	142	121				
GCA.7.12	264	236	223	202	189	172	154	132				
GCA.7.13	286	255	242	218	205	187	167	143				
GCA.7.14	308	275	260	235	220	201	179	154				
GCA.7.15	330	295	279	252	236	215	192	165				
GCA.7.16	352	315	298	269	251	230	204	176				
GCA.7.17	374	334	316	285	265	243	217	187				
GCA.7.18	396	354	335	302	281	257	230	198				
GCA.7.19	418	373	353	319	296	271	241	209				
GCA.7.20	440	393	372	336	312	286	254	220				

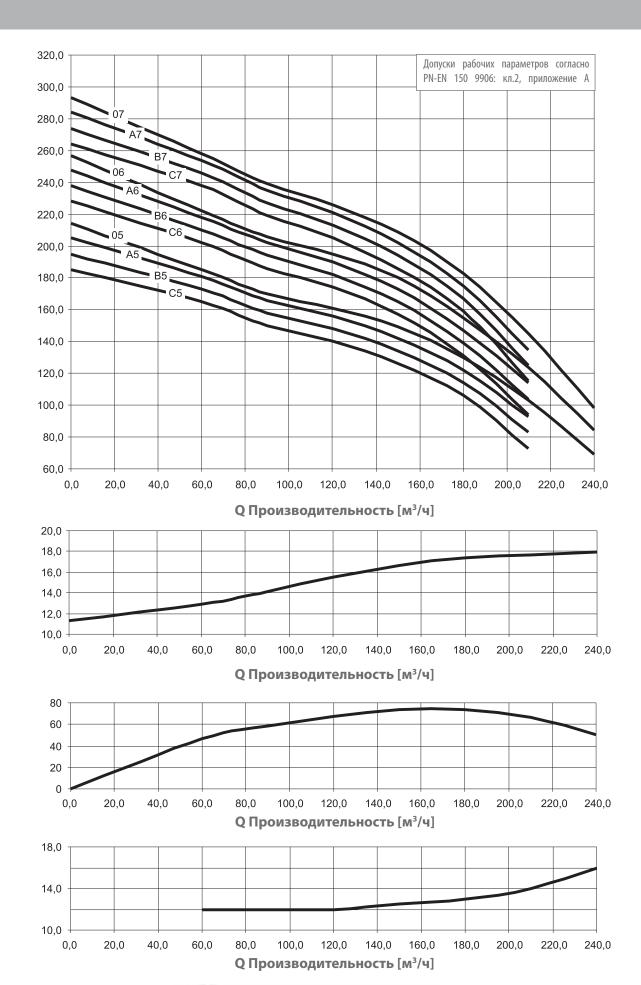
Обозна- чение	Мощ- ность	Масса насоса (кг)			SMV-6			SMH-6						
насоса	Hacoca .		L _p	L,	L _a	Мощность двигателя кВт	Масса состава кг	L,	L _s	L _a	Мощность двигателя кВт	Масса состава кг		
GCA.7.01	6,4	62,0	860	595	1455	7,5	111,0	860	710	1570	7,5	108,0		
GCA.7.02	12,6	72,0	985	775	1760	15,0	137,0	985	920	1905	15,0	137,0		
GCA.7.03	18,8	82,0	1110	965	2075	22,0	173,0	1110	1060	2170	22,0	160,0		
GCA.7.04	24,9	92,0	1235	1055	2290	26,0	195,0	1235	1120	2355	26,0	176,0		
GCA.7.05	31,3	102,0	1360	1315	2675	37,0	232,0	1360	1280	2640	34,0	200,0		

Обозна- чение	Мощ- ность	Масса насоса	SMV-8						SMH-8					
насоса	насоса (кВт)	(кг)	L _p	L,	l,	Мощность двигателя кВт	Масса состава кг	L _p	L,	l,	Мощность двигателя кВт	Масса состава кг		
GCA.7.01	6,4	70,0	-	-	-	-	-	910	659	1569	7,5	136,0		
GCA.7.02	12,6	75,0	1035	695	1730	15,0	172,0	1035	754	1789	15,0	155,0		
GCA.7.03	18,8	85,0	1160	765	1925	22,0	195,0	1160	834	1994	22,0	178,0		
GCA.7.04	24,9	95,0	1285	845	2130	26,0	221,0	1285	929	2214	30,0	202,0		
GCA.7.05	31,3	105,0	1410	925	2335	37,0	247,0	1410	1014	2424	37,0	225,0		
GCA.7.06	37,8	115,0	1535	995	2530	45,0	271,0	1535	1094	2629	45,0	247,0		
GCA.7.07	44,1	125,0	1660	1065	2725	52,0	295,0	1660	1174	2834	55,0	269,0		
GCA.7.08	50,4	145,0	1785	1065	2850	52,0	315,0	1785	1174	2959	55,0	289,0		
GCA.7.09	56,7	155,0	1910	1135	3045	60,0	339,0	1910	1254	3164	63,0	311,0		
GCA.7.10	63,0	165,0	2035	1235	3270	67,0	369,0	2035	1354	3389	75,0	337,0		
GCA.7.11	69,3	175,0	2160	1335	3495	75,0	398,0	2160	1354	3514	75,0	347,0		
GCA.7.12	75,6	185,0	2285	1415	3700	83,0	424,0	2285	1414	3699	90,0	366,0		
GCA.7.13	81,9	195,0	2410	1495	3905	92,0	450,0	2410	1414	3824	90,0	376,0		
GCA.7.14	88,2	205,0	-	-	-	-	-	2535	1464	3999	110,0	393,0		
GCA.7.15	95,5	215,0	-	-	-	-	-	2660	1464	4124	110,0	403,0		
GCA.7.16	100,8	225,0	-	-	-	-	-	2785	1464	4249	110,0	413,0		
GCA.7.17	107,1	235,0	-	-	-	-	-	2910	1464	4374	110,0	423,0		

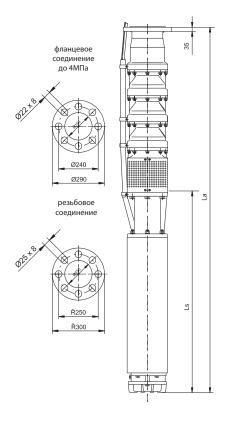
Обозна- чение	Мощ- ность	Масса насоса			SMV-10					SMH-10		
насоса	насоса (кВт)	(кг)	L _p	L,	l,	Мощность двигателя кВт	Масса состава кг	L _p	L,	l,	Мощность двигателя кВт	Масса состава кг
GCA.7.11	69,3	180,0	2193	1190	3383	75,0	486,0	2193	1414	3607	75,0	438,0
GCA.7.12	75,6	190,0	2318	1310	3628	92,0	525,0	2318	1544	3862	90,0	485,0
GCA.7.13	81,9	200,0	2443	1310	3753	92,0	535,0	2443	1544	3987	90,0	495,0
GCA.7.14	88,2	210,0	2568	1430	3998	110,0	574,0	2568	1634	4202	110,0	531,0
GCA.7.15	95,5	220,0	2693	1430	4123	110,0	584,0	2693	1634	4327	110,0	541,0
GCA.7.16	100,8	230,0	2818	1430	4248	110,0	594,0	2818	1634	4452	110,0	551,0
GCA.7.17	107,1	240,0	2943	1430	4373	110,0	604,0	2943	1764	4707	125,0	598,0
GCA.7.18	113,4	250,0	3068	1570	4638	132,0	648,0	3068	1764	4832	125,0	608,0
GCA.7.19	118,8	260,0	3193	1570	4763	132,0	658,0	3193	1764	4957	125,0	610,0
GCA.7.20	125,2	270,0	3318	1570	4888	132,0	668,0	3318	1839	5157	132,0	650,0



			Пр	0ИЗВ0	дител	ьності	ь Q [м ^з	/ч]		
Обозна-	0	40	60	80	100	120	130	150	170	175
чение			Про	извод	итель	ность	Q [л/n	лин]		
насоса	0	666	1000	1333	1666	2000	2166	2500	2833	2916
					H[м]				
GCA.8.01	25	22	20	18	16	15	14	12	10	9
GCA.8.02	50	43	40	36	33	30	29	25	20	18
GCA.8.03	75	65	59	55	50	46	44	38	30	27
GCA.8.04	100	86	78	72	66	60	58	50	40	36
GCA.8.05	124	106	97	89	82	75	72	62	50	45
GCA.8.06	153	131	119	110	101	93	89	77	62	55
GCA.8.07	177	152	139	128	118	108	103	89	72	64
GCA.8.08	203	174	158	146	134	123	118	102	82	74
GCA.8.09	230	197	180	166	152	140	134	116	93	84
GCA.8.10	258	220	200	185	170	156	150	130	104	94
GCA.8.11	282	242	220	204	187	172	165	143	115	103
GCA.8.12	306	263	240	221	203	186	179	155	124	112
GCA.8.13	332	285	260	240	220	202	194	168	135	121
GCA.8.14	357	306	279	258	237	217	209	181	145	131
GCA.8.15	383	328	299	277	254	233	224	193	155	140
GCA.8.16	408	350	319	295	271	248	239	206	166	150
GCA.8.17	443	380	347	321	295	271	261	226	182	165
GCA.8.18	469	403	368	340	313	287	276	239	193	174
GCA.8.19	495	425	388	359	330	303	292	253	204	184
GCA.8.20	519	446	407	377	346	318	305	265	213	193


Обозна- чение	Мощ- ность	Масса насоса			SMV-6		
насоса	насоса (кВт)	(кг)	L,	L,	L _a	Мощность двигателя кВт	Масса состава кг
GCA.8.01	6,9	62,0	860	595	1455	7,5	111,0
GCA.8.02	13,8	72,0	985	775	1760	15,0	137,0
GCA.8.03	20,7	82,0	1110	965	2075	22,0	173,0
GCA.8.04	27,2	92,0	1235	1135	2370	30,0	201,0
GCA.8.05	33,6	102,0	1360	1315	2675	37,0	232,0

Обозна- чение	Мощ- ность	Масса насоса			SMV-8		
насоса	насоса (кВт)	(кг)	L _p	L,	L _a	Мощность двигателя кВт	Масса состава кг
GCA.8.02	13,8	75,0	1035	695	1730	15,0	172,0
GCA.8.03	20,7	85,0	1160	765	1925	22,0	195,0
GCA.8.04	27,2	95,0	1285	845	2130	30,0	221,0
GCA.8.05	33,6	105,0	1410	925	2335	37,0	247,0
GCA.8.06	41,9	115,0	1535	995	2530	45,0	271,0
GCA.8.07	48,6	150,0	1660	1065	2725	52,0	320,0
GCA.8.08	55,5	160,0	1785	1135	2920	60,0	344,0
GCA.8.09	63,1	170,0	1910	1235	3145	67,0	374,0
GCA.8.10	70,5	180,0	2035	1335	3370	75,0	403,0
GCA.8.11	77,6	190,0	2160	1415	3575	83,0	429,0
GCA.8.12	84,2	200,0	2285	1495	3780	92,0	455,0
GCA.8.13	91,2	210,0	2410	1495	3905	92,0	465,0
GCA.8.14	98,2	220,0	2535	1585	4120	110,0	493,0
GCA.8.15	105,2	230,0	2660	1585	4245	110,0	503,0


Обозна- чение	Мощ- ность	Масса насоса			SMV-10		
насоса	насоса (кВт)	(кг)	L,	L,	L _a	Мощность двигателя кВт	Масса состава кг
GCA.8.11	77,6	180,0	2193	1310	3503	92,0	515,0
GCA.8.12	84,2	190,0	2318	1310	3628	92,0	525,0
GCA.8.13	91,2	200,0	2443	1430	3873	110,0	564,0
GCA.8.14	98,2	210,0	2568	1430	3998	110,0	574,0
GCA.8.15	105,2	220,0	2693	1430	4123	110,0	584,0
GCA.8.16	112,2	230,0	2818	1570	4388	132,0	628,0
GCA.8.17	123,0	240,0	2943	1570	4513	132,0	638,0
GCA.8.18	130,2	250,0	3068	1660	4728	150,0	670,0
GCA.8.19	137,5	260,0	3193	1660	4853	150,0	680,0
GCA.8.20	144,0	270,0	3318	1660	4978	150,0	690,0

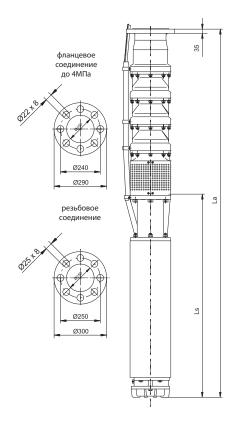
mponsodderboman rombonn

GDB.2

Обозна- чение	Мощ- ность	Масса насоса			SMV-8					SMH-8		
насоса	насоса (кВт)	(кг)	Ļ,	L,	L _a	Мощность двигателя кВт	Масса состава кг	Ļ,	L,	L _a	Мощность двигателя кВт	Масса состава кг
GDB.2.01	17,5	105,0	831	765	1596	22,0	215,0	831	834	1655	22,0	197,0
GDB.2.02	35,0	125,0	1026	925	1951	37,0	267,0	1026	1014	2040	37,0	245,0
GDB.2.03	52,0	145,0	1221	1065	2286	55,0	315,0	1221	1174	2395	55,0	289,0
GDB.2.04	69,0	165,0	1416	1335	2751	75,0	388,0	1416	1354	2770	75,0	337,0
GDB.2.05	86,0	185,0	1611	1495	3106	92,0	440,0	1611	1414	3025	90,0	366,0
GDB.2.06	104,0	205,0	-	-	-	-	-	1806	1464	3270	110,0	393,0

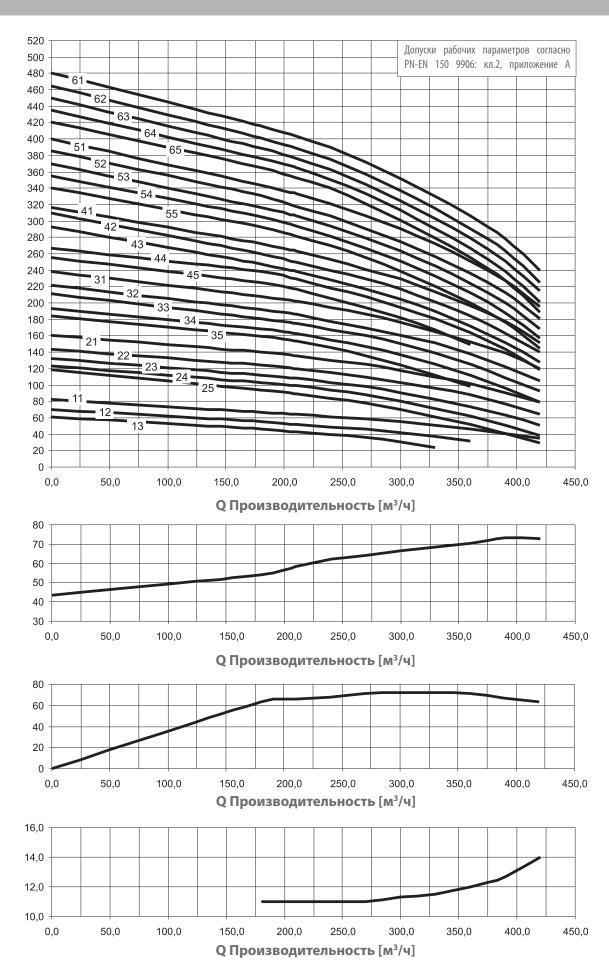
Обозна- чение	Мощ- ность	Масса насоса			SMV-10					SMH-10		
насоса	насоса (кВт)	(кг)	L _p	L,	L _a	Мощность двигателя кВт	Масса состава кг	Ļ,	L,	L _a	Мощность двигателя кВт	Масса состава кг
GDB.2.01	17,5											
GDB.2.02	35,0											
GDB.2.03	52,0	147,0	1160	1190	2350	75,0	453,0	1160	1414	2574	75,0	405,0
GDB.2.04	69,0	167,0	1315	1190	2505	75,0	473,0	1315	1414	2729	75,0	425,0
GDB.2.05	86,0	187,0	1470	1310	2780	92,0	522,0	1470	1544	3014	90,0	482,0
GDB.2.06	104,0	207,0	1625	1430	3055	110,0	571,0	1625	1634	3259	110,0	528,0
GDB.2.07	121,0	227,0	1780	1570	3350	132,0	625,0	1780	1839	3619	132,0	607,0
GDB.2.08	138,0	247,0	1935	1660	3595	150,0	667,0	1935	1934	3869	150,0	654,0
GDB.2.09	156,0	267,0	2090	1800	3890	170,0	721,0	2090	2044	4134	185,0	706,0
GDB.2.10	175,0	287,0	2245	1910	4155	185,0	768,0	2090	2044	4134	185,0	706,0

Обозна- чение	Мощ- ность	Масса насоса			SMV-12					SMH-12		
насоса	насоса (кВт)	(кг)	Ļ,	L,	L _a	Мощность двигателя кВт	Масса состава кг	Ļ,	L,	L _a	Мощность двигателя кВт	Масса состава кг
GDB.2.11	192	312	2400	1760	4160	220	942	2400	2065	4465	220	975
GDB.2.12	209	337	2555	1760	4315	220	967	2555	2065	4620	220	1000


		148 138 129 119 103 94 83 69 55 185 170 161 149 130 117 103 88 69 222 206 195 180 155 141 124 105 84 258 239 226 209 183 165 145 122 98										
	0	60	90	120	150	180	195	210	225	240		
Обозначение насоса				Произв	одитель	ность Q	[л/мин]					
nacoca	0	1000	1500	2000	2500	3000	3250	3500	3750	4000		
					H	M]						
GDB.2.01	43	37	34	33	31	27	23	20	17	13		
GDB.2.02	86	73	67	63	59	51	46	41	35	18		
GDB.2.03	128	111	102	97	90	78	70	61	52	42		
GDB.2.04	171	148	138	129	119	103	94	83	69	55		
GDB.2.05	214	185	170	161	149	130	117	103	88	69		
GDB.2.06	257	222	206	195	180	155	141	124	105	84		
GDB.2.07	293	258	239	226	209	183	165	145	122	98		
GDB.2.08	325	291	270	257	241	213	193	169	143	113		
GDB.2.09	359	324	302	291	271	240	218	194	164	131		
GDB.2.10	389	360	336	324	301	267	239	215	175	145		
GDB.2.11	421	396	370	357	331	294	263	236	192	159		
GDB.2.12	463	432	404	390	361	321	288	257	210	173		

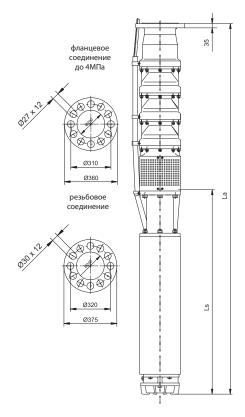
ТЕХНИЧЕСКИЕ ДАННЫЕ

GDB.4



Обозна- чение	Мощ- ность	Масса насоса			SMV-8					SMH-8		
насоса	насоса (кВт)	(кг)	L,	L,	L _a	Мощность двигателя кВт	Масса состава кг	Ļ,	L,	L	Мощность двигателя кВт	Масса состава кг
GDB.4.01	27,5	110,0	841	925	1766	37,0	252,0	841	1014	1855	37,0	230,0
GDB.4.02	61,0	141,0	1006	1235	2241	67,0	345,0	1006	1354	2360	75,0	313,0
GDB.4.03	92,0	172,0	-	-	-	-	-	1171	1464	2635	110,0	360,0

Обозна- чение	Мощ- ность	Масса насоса			SMV-10					SMH-10		
насоса	насоса (кВт)	(кг)	L _p	L,	La	Мощность двигателя кВт	Масса состава кг	Ļ,	L,	La	Мощность двигателя кВт	Масса состава кг
GDB.4.02	61,0	134,0	1025	1190	2215	75,0	440,0	1025	1414	2439	75,0	393,0
GDB.4.03	92,0	165,0	1190	1430	2620	110,0	529,0	1190	1634	2824	110,0	486,0
GDB.4.04	126,0	196,0	1355	1570	2925	132,0	594,0	1355	1839	3194	132,0	576,0
GDB.4.05	160,0	227,0	1520	1800	3320	170,0	681,0	1520	2044	3564	185,0	666,0


Обозна- чение	Мощ- ность	Масса насоса			SMV-12					SMH-12		
насоса	насоса (кВт)	(кг)	L,	L,	L	Мощность двигателя кВт		Ļ,	L,	L _a	Мощность двигателя кВт	Масса состава кг
GDB.4.03	92,0	165,0	-	-	-	-	-	1190	1615	2805	110,0	585,0
GDB.4.04	126,0	196,0	1355	1440	2795	150,0	581,0	1355	1715	3070	132,0	670,0
GDB.4.05	160,0	227,0	1520	1610	3130	185,0	742,0	1520	1917	3437	170,0	809,0
GDB.4.06	193,0	258,0	1685	1760	3445	220,0	888,0	1685	2065	3750	220,0	921,0
GDB.4.07	226,0	289,0	1850	1910	3760	260,0	986,0	1850	2165	4015	260,0	1006,0
GDB.4.08	259,0	320,0	2015	2060	4075	300,0	1085	-	-	-	-	-

				Произ	зодител	ьность (Q [M³/4]			
	0	120	150	180	210	240	270	300	330	360
Обозначение насоса				Произв	одитель	ность Q	[л/мин]			
насоса	0	2000	2500	3000	3500	4000	4500	5000	5500	6000
					H	м]				
GDB.4.01	45	37	35	33	30,5	28	24,5	21	-	-
GDB.4.02	92	78	75	72	68	64	58	51	43	34
GDB.4.03	139	116	113	109	104	98	90	79	68	56
GDB.4.04	186	158	154	150	144	137	125	112	98	82
GDB.4.05	233	198	194	190	184	172	158	143	126	107
GDB.4.06	280	238	234	230	221	209	193	174	154	133
GDB.4.07	327	278	274	270	259	245	227	205	182	158
GDB.4.08	374	314	310	297	281	261	236	210	183	183

ТЕХНИЧЕСКИЕ ДАННЫЕ

GFB.1

Обозна- чение	Мощ- ность	Масса насоса			SMV-8			SMH-8					
насоса	насоса (кВт)	(кг)	L,	L,	L _a	Мощность двигателя кВт	Масса состава кг	Ļ,	L,	L _a	Мощность двигателя кВт	Масса состава кг	
GFB.1.13	45,0	285,0	1113	1065	2178	55,0	455,0	1113	1174	2287	55,0	429,0	
GFB.1.12	55,0	285,0	1113	1135	2248	60,0	469,0	1113	1254	2367	63,0	441,0	
GFB.1.11	72,0	285,0	1113	1335	2448	75,0	508,0	1113	1414	2527	90,0	466,0	

Обозна- чение	Мощ- ность	Масса насоса			SMV-10			SMH-10						
насоса	насоса (кВт)	(кг)	L,	L,	L _a	Мощность двигателя кВт	Масса состава кг	Ļ,	L,	L _a	Мощность двигателя кВт	Масса состава кг		
GFB.1.13	45,0	265,0	1127	1190	2317	75,0	571,0	1127	1414	2541	75,0	523,0		
GFB.1.12	55,0	265,0	1127	1190	2317	75,0	571,0	1127	1414	2541	75,0	523,0		
GFB.1.11	72,0	265,0	1127	1190	2317	75,0	571,0	1127	1544	2671	90,0	560,0		
GFB.1.25	89,0	325,0	1327	1430	2757	110,0	689,0	1327	1634	2961	110,0	646,0		
GFB.1.24	98,0	325,0	1327	1430	2757	110,0	689,0	1327	1634	2961	110,0	646,0		
GFB.1.23	109,0	325,0	1327	1570	2897	132,0	723,0	1327	1764	3091	125,0	683,0		
GFB.1.22	127,0	325,0	1327	1570	2897	132,0	723,0	1327	1839	3166	132,0	705,0		
GFB.1.21	142,0	325,0	1327	1660	2987	150,0	745,0	1327	1939	3266	150,0	732,0		
GFB.1.35	153,0	385,0	1527	1800	3327	170,0	839,0	1527	2044	3571	185,0	824,0		
GFB.1.34	162,0	385,0	1527	1800	3327	170,0	839,0	1527	2044	3571	185,0	824,0		

			Прои	ІЗВО Д	ител	ьнос	ть Q [м³/ч]					
Обозна-	0	180	210	240	270	300	330	360	390	420			
чение		Г	роиз	води	тель	ност	ь Q [л	/мин]				
насоса	0	3000	3500	4000	4500	5000	5500	6000	- 6500	7000			
	Ť	0 3000 3500 4000 4500 5000 5500 6000 6500 7000 H [m]											
GFB.1.13	61	46	43	40	36	31	24	-	-	-			
GFB.1.12	70	55	52	49		41,1	37	32	-	-			
GFB.1.11	82	67	64		58,5	55	51	46,5	41	35			
GFB.1.25	119	94	89	84	78	70	61	52	41	29			
GFB.1.24	123	103	99	94	88	80	71	62	51	39			
GFB.1.23	132	112	108	103	98	91	83	74	63	51			
GFB.1.22	144	124	120	115	110	103	96	88	77	65			
GFB.1.21	160	140	136	130	125	118	110	102	91	79			
GFB.1.35	184	159	154	146	136	124	112	98	-	-			
GFB.1.34	193	168	163	155	147	137	125	112	96	79			
GFB.1.33	211	181	175	167	160	150	139	125	109	93			
GFB.1.32	222	192	186	178	170	161	151	138	122	105			
GFB.1.31	238	208	202	194	186	176	165	153	139	120			
GFB.1.45	255	225	217	206	195	182	167	149	-	-			
GFB.1.44	267	238	229	218	208	195	181	164	144	119			
GFB.1.43	293	248	239	228	217	205	190	172	151	128			
GFB.1.42	310	260	250	240	230	217	201	184	163	140			
GFB.1.41	317	272	263	253	241	229	214	197	177	152			
GFB.1.55	340	293	282	270	255	239	221	200	176	145			
GFB.1.54	355	305	294	282	267	251	233	212	188	157			
GFB.1.53	370	317	306	294	279	263	245	224	200	169			
GFB.1.52	385	331	318	306	291	275	257	236	212	181			
GFB.1.51	400	344	333	321	306	290	272	251	227	196			
GFB.1.65	420	365	353	349	321	301	270	256	227	189			
GFB.1.64	435	377	365	351	333	313	291	267	239	201			
GFB.1.63	450	389	377	363	345	325	303	279	251	215			
GFB.1.62	465	401	389	375	357	337	315	291	263	225			
GFB.1.61	480	416	404	390	372	352	330	306	278	240			

Обозна- чение	Мощ- ность	Масса насоса	SMV-12						SMH-12					
насоса	насоса (кВт)	(кг)	l,	L,	l,	Мощность двигателя кВт	Масса состава кг	L,	L,	L,	Мощность двигателя кВт	Масса состава кг		
GFB.1.25	89,0	325,0	-	-	-	-	-	1130	1615	2745	110,0	745,0		
GFB.1.24	98,0	325,0	-	-	-	-	-	1130	1615	2745	110,0	745,0		
GFB.1.23	109,0	325,0	-	-	-	-	-	1130	1715	2845	132,0	799,0		
GFB.1.22	127,0	325,0	-	-	-	-	-	1130	1715	2845	132,0	799,0		
GFB.1.21	142,0	325,0	1330	1440	2770	150,0	710,0	1130	1865	2995	150,0	880,0		
GFB.1.35	153,0	400,0	1529	1610	3139	185,0	915,0	1529	1915	3444	170,0	982,0		
GFB.1.34	162,0	400,0	1529	1610	3139	185,0	915,0	1529	1915	3444	170,0	982,0		
GFB.1.33	180,0	400,0	1529	1760	3289	220,0	1030,0	1529	1985	3514	190,0	1020,0		
GFB.1.32	198,0	400,0	1529	1760	3289	220,0	1030,0	1529	2065	3594	220,0	1063,0		
GFB.1.31	216,0	400,0	1529	1910	3439	260,0	1097,0	1529	2165	3694	260,0	1117,0		
GFB.1.45	220,0	460,0	1729	1910	3439	260,0	1157,0	1729	2165	3894	260,0	1117,0		
GFB.1.44	238,0	460,0	1729	1910	3439	260,0	1157,0	1729	2165	3894	260,0	1117,0		
GFB.1.43	252,0	460,0	1729	1910	3439	260,0	1157,0	1729	2165	3695	260,0	1117,0		
GFB.1.42	272,0	460,0	1729	2060	3789	300,0	1225,0	-	-	-	-	-		
GFB.1.41	292,0	460,0	1729	2060	3789	300,0	1225,0	-	-	-	-	-		
GFB.1.55	288,0	520,0	1929	2060	3989	300,0	1285,0	-	-	-	-	-		

Uwaga

Objaśnienie do oznaczenia pompy GFB.I

nr kolejny kombinacji stoczeń wirników ilość stopni hydraulicznych w pompie

typowielkość pompy

ТЕХНИЧЕСКИЕ ДАННЫЕ

SMV/SMK

	Тип двигателя	Номинальная мощность	Номинальное напряжение	Номинальный ток	Коэффициент мощности	КПД насоса	Оборотная скорость	Кратность тока пуска	Длина двигателя	Диаметр ds	Вес двига-	Предохра устро		Конде	нсатор
		P _n	U _n	I,	cos φ	h	n _n	n _n			теля				
		кВт	V	A	-	%	обр/мин	-	ММ	ММ	Кг	UZS.4	UZS.5	μF	٧
	SMV4*	0,37	400	1,1	0,71	66	2830	4,5	308	95,2	7,10	UZS.4.01	-		
16	SMV4*	0,55	400	1,5	0,77	68	2825	5,0	328	95,2	8,00	UZS.4.01	-		
Гате	SMV4*	0,75	400	2,0	0,76	73	2835	5,7	358	95,2	9,20	UZS.4.02	-		
електродвигатель	SMV4*	1,10	400	2,8	0,76	76	2820	4,8	388	95,2	10,5	UZS.4.02	-		
ктр	SMV4*	1,50	400	3,8	0,76	76	2820	4,8	428	95,2	12,0	UZS.4.03	-		
еле	SMV4*	2,20	400	5,9	0,71	77	2840	5,5	488	95,2	14,8	UZS.4.04	UZS.5.01		
Грехфазной	SMV4*	3,00	400	7,5	0,73	80	2825	4,5	529	95,2	16,3	UZS.4.05	UZS.5.02		
хфа	SMV4*	4,00	400	9,4	0,76	81	2805	4,4	609	95,2	20,1	UZS.4.06	UZS.5.03		
l g	SMV4	5,50	400	13,3	0,75	80	2810	4,5	719	95,2	25,7	UZS.4.07	UZS.5.04		
	SMV4	7,50	400	18,2	0,73	82	2830	4,7	859	95,2	32,6	UZS.4.08	UZS.5.05		
all!	SMV4*	0,37	230	4,80	0,74	51	2840	2,9	328	95,2	7,90			16	450
IFaTe	SMV4*	0,55	230	5,70	0,77	60	2850	3,0	358	95,2	9,10			20	450
одви	SMV4*	0,75	230	7,00	0,85	62	2840	3,2	388	95,2	10,5			30	450
електродвигатель	SMV4*	1,10	230	9,60	0,85	64	2850	3,5	428	95,2	12,0			40	450
	SMV4*	1,50	230	11,5	0,87	68	2850	4,3	488	95,2	14,6			50	450
3H0j	SMV4*	2,20	230	14,7	0,93	71	2840	3,7	508	95,2	18,1			70	450
Однофазной	SMV4*	3,00	230	19,1	0,98	72	2825	5,3	609	95,2	20,5			100	450
0др	SMV4	4,00	230	23,9	0,98	76	2850	3,6	719	95,2	25,0			130	450
4	SMK4*	0,55	400	1,7	0,71	66	2800	4,8	384	95,2	9,4	UZS.4.01	-		
Гате	SMK4*	0,75	400	2,1	0,73	71	2800	4,8	384	95,2	9,6	UZS.4.02	-		
електродвигатель	SMK4*	1,10	400	3,2	0,72	69	2800	5,1	414	95,2	10,8	UZS.4.02	-		
ктрс	SMK4*	1,50	400	4,0	0,76	71	2800	5,3	444	95,2	12,0	UZS.4.03	-		
	SMK4*	2,20	400	5,5	0,82	70	2830	5,0	506	95,2	15,8	UZS.4.04	UZS.5.01		
3HOŇ	SMK4*	3,00	400	7,2	0,82	73	2850	5,2	554	95,2	18,4	UZS.4.05	UZS.5.02		
Трехфазной	SMK4*	4,00	400	9,1	0,83	76	2850	5,1	615	95,2	20,4	UZS.4.06	UZS.5.03		
Тре	SMK4	5,50	400	13,1	0,81	75	2860	5,2	705	95,2	25,2	UZS.4.07	UZS.5.04		
род	SMK4*	0,55	230	4,6	0,94	55	2800	3,1	440	95,2	8,5	Тур	CB	20	450
THEKT	SMK4*	0,75	230	6,3	0,95	55	2800	3,2	460	95,2	9,8	Тур		35	450
HOЙ 6	SMK4*	1,10	230	9,5	0,89	57	2820	3,5	490	95,2	11,0	Тур		40	450
Однофазной епектрод	SMK4*	1,50	230	11,9	0,91	63	2820	3,7	530	95,2	12,3	Тур СВ		50	450
ПДО	SMK4*	2,20	230	17,0	0,90	61	2830	4,2	600	95,2	15,0	Тур	СВ	80	450

Внимание!

Допускаемае количество включени 20 разов в течении одного часа. Минимальный разрыв между включениями и выключениями минимум 3 минуты. Степень защиты IP68. Изоляция: класс В.

FRANKLIN Elektric GmbH 4"

Тип двигателя	Номинальная мощность Р _п	Номинальное напряжение U _п	Номинальный ток I _п	Коэффициент мощности cos ф	КПД насоса h	Оборотная скорость п _п	Кратность тока пуска п _п	Длина двигателя	Диаметр ds	Вес двигателя
	кВт	V	A		%	обр/мин		ММ	MM	Кг
234 561 3016*	0,37	400	1,2	0,76	66	2870	3,91	223,0	92,25	7,3
234 562 3016*	0,55	400	1,6	0,80	68	2855	4,19	242,1	92,25	8,3
234 563 3016*	0,75	400	2,1	0,80	70	2860	4,24	270,8	92,25	9,5
234 524 1616*	1,10	400	3,1	0,77	75	2865	5,13	298,5	92,25	10,8
234 525 1616*	1,50	400	3,9	0,81	73	2840	4,80	327,2	92,25	12,1
234 526 1616*	2,20	400	5,8	0,81	75	2815	4,95	355,9	92,25	13,5
234 591 1616*	3,00	400	7,5	0,81	76	2830	5,32	422,8	92,25	16,0
234 527 3603*	3,70	400	9,0	0,84	77	2B30	5,11	551,7	92,25	22,5
234 593 3603*	4,00	400	9,8	0,84	77	2835	5,61	589,8	92,25	23,5
234 528 3603	5,50	400	13,5	0,84	76	2830	5,33	704,1	92,25	29,0
234 595 3403	7,50	400	19,0	0,79	77	2820	5,45	774,0	92,25	32,5

Внимание!

Допускаемае количество включени 20 разов в течении одного часа. Минимальный разрыв между включениями и выключениями минимум 3 минуты. Степень защиты IP68. Изоляция: класс В.

Тип двигателя	Номинальная	Номинальное	Номинальный ток	Коэффициент	кпд	Оборотная	Кратность	Длина	Диаметр	Вес двига-	<u>Предохр</u>	аняемое
	мощность	напряжение	I _n	мощности	насоса	скорость	тока пуска	двигателя	ds	теля		йство
	P _n	U _n		cos φ	h	n _n	n _n					
	кВт	٧	A		%	обр/мин		мм	ММ	Кг	UZS.4	UZS.5
SMV 6*	1,5	400	3,6	0,85	69	2880	4,70	485	144	32,4	UZS.4.03	
SMV 6*	2,2	400	5,7	0,83	67,5	2880	4,70	485	144	32,5	UZS.4.04	UZS.5.01
SMV 6*	3,0	400	7,6	0,79	72	2900	5,38	502	144	36	UZS.4.05	UZS.5.02
SMV 6*	4,0	400	9,3	0,84	74	2890	5,46	521	144	40	UZS.4.06	UZS.5.03
SMV 6*	5,5	400	12,2	0,83	78	2885	5,37	552	144	44	UZS.4.07	UZS.5.04
SMV 6*	7,5	400	16,3	0,84	80	2880	5,47	595	144	49	UZS.4.08	UZS.5.05
SMV 6*	9,0	400	19,9	0,82	81	2890	5,65	635	144	54	UZS.4.09	UZS.5.06
SMV 6*	11,0	400	23,7	0,83	81,5	2890	5,96	685	144	60	-	UZS.5.07
SMV 6*	13,0	400	27,7	0,83	82	2885	6,27	725	144	62	-	UZS.5.08
SMV 6*	15,0	400	30,4	0,86	83,5	2885	6,44	775	144	65	-	UZS.5.08
SMV 6*	18,5	400	38,0	0,82	84	2885	6,50	875	144	81	-	UZS.5.09
SMV 6*	22,0	400	43,7	0,85	86	2885	6,74	965	144	91	-	UZS.5.10
SMV 6*	26,0	400	53,3	0,84	84	2880	6,54	1055	144	103	-	UZS.5.11
SMV 6*	30,0	400	60,2	0,85	84,5	2870	6,55	1135	144	109	-	UZS.5.12
SMV 6	37,0	400	70,5	0,88	86	2860	6,67	1225	144	120	-	UZS.5.13
SMV 8*	13,0	400	29,0	0,83	77	2880	4,60	695	193	97	-	UZS.5.08
SMV 8*	15,0	400	34,0	0,83	78	2870	4,60	695	193	97	-	UZS.5.08
SMV 8*	18,5	400	39,0	0,84	80	2890	4,60	765	193	110	-	UZS.5.09
SMV 8*	22,0	400	47,0	0,84	81	2895	4,80	765	193	110	-	UZS.5.10
SMV 8*	26,0	400	54,0	0,84	81,8	2900	5,10	845	193	126	-	UZS.5.11
SMV 8*	30,0	400	61,0	0,85	84	2880	5,33	845	193	126	-	UZS.5.12
SMV 8*	37,0	400	74,0	0,85	85	2900	5,41	925	193	142	-	UZS.5.13
SMV 8*	45,0	400	89,0	0,86	86	2895	5,28	995	193	156	-	UZS.5.14
SMV 8*	52,0	400	103,0	0,85	86	2890	5,50	1065	193	170	-	UZS.5.14
SMV 8*	55,0	400	111,0	0,86	86	2880	5,10	1065	193	170	-	UZS.5.14
SMV 8*	60,0	400	118,0	0,85	86,5	2890	5,41	1135	193	184	-	UZS.5.14
SMV 8*	67,0	400	131,0	0,84	87	2900	5,89	1235	193	204	-	UZS.5.14
SMV 8*	75,0	400	147,0	0,84	87,7	2905	6,12	1335	193	223	-	UZS.5.15
SMV 8*	83,0	400	166,0	0,84	87,5	2900	6,10	1415	193	239	-	UZS.5.15
SMV 8*	92,0	400	177,0	0,86	88	2900	6,13	1485	193	255	-	UZS.5.15
SMV 8	110,0	400	214,0	0,85	87,6	2900	6,20	1585	193	273	-	UZS.5.16
SMV 10*	75,0	400	143,0	0,88	85,2	2920	5,00	1190	236	306	-	UZS.5.15
SMV 10*	92,0	400	168,0	0,88	87,6	2926	6,32	1310	236	335	-	UZS.5.15
SMV 10*	110,0	400	200,0	0,89	89,4	2936	6,43	1430	236	364	-	UZS.5.16
SMV 10*	132,0	400	245,0	0,88	88,5	2930	6,65	1570	236	398	-	UZS.5.16
SMV 10*	150,0	400	270,0	0,90	89,2	2925	6,99	1660	236	420	-	UZS.5.16
SMV 10*	170,0	400	308,0	0,89	90	2930	6,83	1800	236	454	-	UZS.5.16
SMV 10	185,0	400	325,0	0,90	91	2930	6,74	1910	236	481	-	UZS.5.16
SMV 12*	150,0	400	282,0	0,87	88,3	2920	6,20	1440	288	385	-	UZS.5.16
SMV 12*	185,0	400	335,0	0,88	90	2940	6,50	1610	288	515	-	UZS.5.16
SMV 12*	220,0	400	390,0	0,89	91	2945	6,70	1760	288	630	-	
SMV 12*	260,0	400	458,0	0,90	92	2950	6,60	1910	288	697	-	
SMV 12	300,0	400	528,0	0,89	91	2950	6,50	2060	288	765	-	

Допустимое количество включений: **SMV6**-15/час, **SMV8**-15/час, **SMV10**-15/час, **SMV12**-5/час, в равных максимальных расетоаниях во времени, минимум б минут.

Допускается работа в позиции горизонтальной.

Можно употреблять UZS.4 или UZS.5 в зависимости од требований - UZS.5 расширенная система предохранения двигателя с программируемым командоконтроллёром и без нужды употребления зондов поверхности воды. Подробности в руководстве по эксплуатации выше упомянутых устройств.

Степень защиты IP68. UZS.4/UZS.5 - подать тип и мощность двигателя.

Тип двигателя	Номинальная	Номинальное	Номинальный ток	Коэффициент	кпд	Оборотная	Кратность	Длина		Вес двига-		аняемое
	мощность Р _п	напряжение U _п	l,	мощности cos ф	насоса h	скорость п _п	тока пуска п _п	двигателя	ds	теля	устро	йство
	'n	Ĭn				·'n	··n					
	кВт	V	A	-	%	обр/мин	-	мм	MM	Кг	UZS.4	UZS.5
SMH 6*	3,7	400	9,0	0,79	77	2850	5,40	635	141	39	UZS.4.05	-
SMH 6*	5,5	400	12,0	0,83	80	2850	5,70	678	141	43	UZS.4.07	UZS.5.04
SMH 6*	7,5	400	17,0	0,79	82	2850	5,60	710	141	46	UZS.4.08	UZS.5.05
SMH 6*	9,2	400	21,0	0,80	82	2850	5,60	750	141	50	-	UZS.5.06
SMH 6*	11,0	400	24,0	0,82	83	2850	6,30	835	141	58	-	UZS.5.06
SMH 6*	13,0	400	29,0	0,80	83	2850	6,00	870	141	61	-	UZS.5.07
SMH 6*	15,0	400	32,0	0,82	83	2850	5,90	920	141	65	-	UZS.5.08
SMH 6*	18,5	400	40,0	0,81	83	2850	5,80	985	141	71	-	UZS.5.09
SMH 6*	22,0	400	48,0	0,80	84	2850	5,90	1060	141	78	-	UZS.5.10
SMH 6*	26,0	400	57,0	0,80	83	2830	6,00	1120	141	84	-	UZS.5.11
SMH 6*	30,0	400	64,0	0,83	83	2830	5,60	1230	141	94	-	UZS.5.12
SMH 6	34,0	400	71,0	0,83	84	2830	5,40	1280	141	98	-	UZS.5.12
SMH 6	37,0	400	78,0	0,83	84	2830	5,40	1360	141	105	-	UZS.5.13
SMH 8*	7,5	400	17,0	0,82	80	2870	4,50	659	181	66	UZS.4.08	UZS.5.05
SMH 8*	11,0	400	24,0	0,83	81	2870	4,70	704	181	73	-	UZS.5.06
SMH 8*	15,0	400	31,0	0,84	84	2870	4,70	754	181	80	-	UZS.5.08
SMH 8*	18,5	400	38,0	0,85	84	2870	4,70	794	181	86	-	UZS.5.09
SMH 8*	22,0	400	45,0	0,85	85	2870	5,10	834	181	93	-	UZS.5.10
SMH 8*	30,0	400	58,0	0,87	86	2870	4,90	929	181	107		UZS.5.11
SMH 8*	37,0	400	72,0	0,86	87	2870	5,40	1014	181	120	-	UZS.5.12
SMH 8*	45,0	400	88,0	0,86	87	2870	5,50	1094	181	132	-	UZS.5.14
SMH 8	55,0	400	108,0	0,87	87	2870	5,40	1174	181	144	-	UZS.5.14
SMH 8	63,0	400	127,0	0,87	86	2850	5,30	1254	181	156	-	UZS.5.14
SMH 8	75,0	400	145,0	0,88	87	2850	4,90	1354	181	172	-	UZS.5.15
SMH 8	90,0	400	172,0	0,89	87	2850	4,60	1414	181	181	-	UZS.5.15
SMH 8	110,0	400	210,0	0,89	87	2850	4,00	1464	181	188	-	UZS.5.16
SMH 10*	75,0	400	154,0	0,85	89	2900	1,60	1414	230	258	-	UZS.5.15
SMH 10*	90,0	400	189,0	0,85	87	2900	1,70	1544	230	295	-	UZS.5.16
SMH 10*	110,0	400	230,0	0,87	88	2900	1,70	1634	230	321	-	UZS.5.16
SMH 10*	125,0	400	259,0	0,86	89	2900	1,70	1764	230	358	-	UZS.5.16
SMH 10*	132,0	400	275,0	0,87	89	2900	1,90	1839	230	380	-	UZS.5.16
SMH 10	150,0	400	311,0	0,87	89	2900	1,90	1934	230	407	-	UZS.5.16
SMH 10	185,0	400	379,0	0,86	89	2900	1,70	2044	230	439	-	UZS.5.16
SMH 12*	110,0	400	222,0	0,85	86	2900	1,30	1615	273	420	-	UZS.5.16
SMH 12*	132,0	400	263,0	0,86	86	2900	1,40	1715	273	474	-	UZS.5.16
SMH 12*	150,0	400	302,0	0,86	85	2900	1,50	1865	273	555	-	UZS.5.16
SMH 12*	170,0	400	343,0	0,86	85	2900	1,50	1915	273	582	-	UZS.5.16
SMH 12*	190,0	400	383,0	0,86	85	2900	1,50	1985	273	620	-	-
SMH 12*	220,0	400	444,0	0,86	85	2900	1,50	2065	273	663	-	-
SMH 12	260,0	400	499,0	0,86	87	2900	1,50	2165	273	717	-	-

Допустимое количество включений: **SMH6**-10/час, **SMH8**-10/час, **SMHI0**-10/час, **SMH12**-5/час, в равных максимальных расстояниях во времени, минимум б минут.

Допускается работа в позиции горизонтальной.

Можно использовать UZS.4 или UZs.s в зависимости от требований - UZS.S система защиты и управления двигателя с программируемым командоконтроллёром и без необходимости употребления зондов зеркала воды. Подробности в руководстве по эксплуатации выше упомянутых устройств.

Величины тока двигателей SMH6 и SMH8 для непосредственного пуска, двигателей SMH 1 О и SMH 12 для пуска звездатреугольник.

UZS.4/UZS.S - подать тип и мощность двигателя.

109316, г.Москва, Волгоградский пр-т, 45а, оф.6 тел./факс: (495) 380-21-89, (916) 764-61-36 msk@svprk.ru, www.svprk.ru

420088, г. Казань, ул. Журналистов, д. 54 тел./факс (843) 272-70-10, 272-07-81, 272-61-41 svpk@mi.ru, www.svprk.ru